

ECONOMICS · FINANCE · PLANNING

DATE:June 6, 2023TO:Garth Appanaitis, DKSFROM:Tyler Bump, Scott Goodman, and James Kim, ECONorthwestSUBJECT:Task 3.3 NSHA Economic Analysis

A. Introduction

The City of Sweet Home is in the process of updating its Transportation System Plan (TSP). As a component of the update, the City is also creating a refinement plan for the North Sweet Home Area (NSHA). The area north of Albany and Eastern Railroad includes over 500 acres of undeveloped land, including natural resources and amenities. The NHSA is largely zoned for Recreational Commercial, which is intended for businesses that cater to tourists and recreational activity. The area also includes some existing residential and industrial uses.

The NSHA project includes a planning component that focuses on identifying and evaluating land use alternatives and zoning options to enable redevelopment opportunities and marketsupported uses in the NSHA. To that end, ECONorthwest conducted an economic analysis of the NSHA by reviewing its previous work for the City's 2017 Economic Opportunities Analysis (EOA), analyzing new employment data, and meeting with property owners and businesses who have an interest in seeing new development in the NSHA. As a result, we identified key areas of economic opportunity and land use alternatives for further evaluation.

B. Key Takeaways from 2017 EOA

The 2017 EOA includes several key pieces of information, as follows.

"Sweet Home's primary competitive advantages are access to transportation, vacant buildable land, water and wastewater capacity, access to natural resources, relatively affordable housing, and high quality of life. These factors make Sweet Home attractive to residents and businesses that want a high quality of life where they live and work."¹

Access

New businesses and households in the NSHA will have access to the state highway system through U.S. Route 20 and State Route 228. U.S. Route 20 is particularly important for growing economic opportunities because it connects larger cities in the Willamette Valley like Albany and Lebanon to cities in Central Oregon like Sisters and Bend. Availability of surface transportation is necessary for connecting people to goods and destinations and connecting businesses to workers.

¹ ECONorthwest, Sweet Home Economic Opportunities Analysis, Final Report, April 2017.

Zoning

Most of the land in the NSHA is zoned for Recreation Commercial (RC) and vacant. The RC zone in the NSHA was originally intended to enable a large tourism-oriented development in the area. The zoning restricts uses to those related to tourist and recreation and does not allow common commercial and industrial uses. Within the current zoning there are opportunities for economic growth through RV parks, resorts, and other recreation retail and services. However, a zoning change to allow new commercial and industrial uses would further enhance economic development opportunities.

In Fall 2022 the City updated the Development Code and added a Mixed Use Employment Zone (MUE) designation. This update was accompanied by an update to the Comprehensive Plan map and all the properties currently zoned RC had the Comprehensive Plan designation changed to MUE. While existing zoning in the area was not changed during this process, the modification enables flexibility by providing the benefits of the existing RC zoning while facilitating future transition to the MUE.

Notable Sites

The NSHA includes a former site of a lumber and plywood mill. The "Old Mill" site requires remediation activities before it can be repurposed for other uses. Linn County sold the site to Sweet Home Real Estate Restorations in 2022.²

The NSHA also includes a former gravel mine, now called "Quarry Park." The Quarry Park site is not suitable for new development due to natural constraints (i.e., wetlands and flood plain). The best use of this area may be as open space or an outdoor event venue. The site is now owned by the City of Sweet Home.

Target Industries

Employment growth in the NSHA and the broader city is tied to the location along U.S. Route 20, access to workers and customers from across the mid-Willamette Valley, and availability of land. Target industries for employment growth in the City of Sweet Home per the 2017 EOA are:

- Manufacturing, because of the location along U.S. Route 20,
- Small-scale warehouse, distribution, and wholesale, because of the location along U.S. Route 20,
- **Professional and business services**, because of high quality of life and relatively affordable housing,

² The New Era, "County commissioners agree to sell Sweet Home mill site to firm owned by Josh Victor," February 9, 2022, https://www.sweethomenews.com/story/2022/02/09/news/county-commissioners-agree-to-sell-sweet-home-mill-site-to-firm-owned-by-josh-victor/25402.html.

- Services for seniors, because of an aging population and attractiveness of Sweet Home for seniors,
- Services for visitors, because of availability of tourist-oriented land, and
- Services for residents, as the population in the city will grow.

To support these areas of employment growth, the NSHA needs to provide more commercial and industrial land with zoning that allows these uses. Broadening the types of uses allowed in the Recreation Commercial zone will attract new businesses and encourage greater development activity. While the City of Sweet Home has sufficient commercial and industrial land to support historical levels of growth, rezoning or changing use allowances of the Recreation Commercial zone in the NSHA is necessary to unlock new potential for growth.

Key Conclusions

The EOA concluded that there is potential for new small-sized and mid-sized businesses to bring commercial and industrial employment to the City of Sweet Home. Though there is sufficient land to accommodate the projected growth, the employment forecast does not include additional potential for development on Recreation Commercial land. The untapped employment potential in the NSHA would be even greater if the City broadens the types of uses allowed in this zone or rezones some portion of the land. Industrial businesses such as food processors or wood product manufacturers could locate in this area with appropriate incentives.

C. Employment Statistics

Employment Growth

The 2017 EOA included employment data for the City of Sweet Home with the then-current data. ECONorthwest has updated the data for the most recently available year. Both data sets come from Oregon Employment Department³.

Comparison of employment data between 2014 and 2021, as shown in Figure 1, revealed noticeable employment growth in 5 industry groups.

- Construction
- Wholesale and Retail Trade⁴
- Transportation and Warehousing
- Health Care and Social Assistance

³ Because the raw data includes confidential information about individual businesses, the reported data is aggregated to ensure there are at least 3 firms in each group and no firm makes up more than 80 percent of total employment in the group.

⁴ Most of the jobs in this industry groups belong to Retail Trade industry.

Accommodation, Food Services, Arts, Entertainment, and Recreation

These industry groups are directly related to the target industries identified in the EOA. Employment related to transportation and warehousing is supported by the city's location along U.S. Route 20. Services of seniors are reflected in growth in the Health Care and Social Assistance industry group. Similarly, services for visitors are reflected in growth in the Accommodation, Food Services, Arts, Entertainment, and Recreation industry group. Allowing more commercial and industrial uses in the NSHA is critical for supporting the continued growth of these industry groups.

Source: Oregon Employment Department, data aggregati	ion and an	alysis by	ECONorthwest
Industry	2014	2021	Difference
Agriculture, Forestry, Fishing and Hunting	94	95	1
Construction	17	97	80
Manufacturing	235	230	(5)
Wholesale and Retail Trade	327	441	114
Transportation and Warehousing	23	108	85
Information	20	23	3
Finance and Insurance	34	29	(5)
Real Estate and Rental and Leasing	26	14	(12)
Professional, Scientific, and Technicial Services and Management of Companies and Enterprises	11	29	18
Administrative and Support and Waste Management and Remediation Services	35	27	(8)
Health Care and Social Assistance	201	292	91
Accommodation, Food Services, Arts, Entertainment, and Recreation	237	286	49
Other Services (except Public Administration)	95	52	(43)
Public Administration	529	134	(395)
Total (excluding Public Administration)	1,355	1,723	368

Figure 1. Employment	in Sweet Home in	2014 and 2021
----------------------	------------------	---------------

A deeper look at the data revealed that more than half of the growth in the Health Care and Social Assistance industry group was due to reassignment of in-home care businesses from Other Services. About 50 businesses that used to be in the Other Services category are in the Health Care and Social Assistance category in the 2021 data. Even after discounting employment related to this reassignment, employment in the Health Care and Social Assistance industry group grew by about 40 percent between 2014 and 2021.

Notably, the large decrease in employment in the Public Administration industry group is unlikely to be actual employment loss for Sweet Home. It is more likely that some county, state, or federal jobs were counted in Sweet Home in 2014 but outside of Sweet Home in 2021.

Excluding changes in employment from the Public Administration industry group, total employment in Sweet Home increased by 368 jobs between 2014 and 2021. For comparison, data from the U.S. Census Bureau shows that employment increased by 315 jobs from 1,671 in 2014 to 1,986 in 2020.⁵

⁵ Based on reported from OnTheMap 6.23.1, which uses data from Longitudinal Employer-Household Dynamics Origin-Destination Employment Statistics (LODES). The latest year the data was available for was 2020.

Employment Distribution

Figure 2. Share of Employment by Industry Group in Sweet Home, 2021

Source: Oregon Employment Department, data aggregation and analysis by ECONorthwest

In terms of concentration of employment in Sweet Home, the Wholesale and Retail Trade industry group makes up the largest (24 percent) portion of all employment. The three next largest are Health Care and Social Assistance (16 percent); Accommodation, Food Services, Arts, Entertainment, and Recreation (15 percent); and Manufacturing (12 percent). All these but Manufacturing are also industry groups that experienced large growths since 2014. Since Manufacturing is the fourth largest industry group by employment and a key industry identified in the EOA that did not experience growth since 2014, there may be untapped potential remaining.

Average Pay

Figure 3. Average Pay per Employee in Sweet Home, 2021

Source: Oregon Employment Department, data aggregation and analysis by ECONorthwest

The City of Sweet Home should also consider the average pay of the industries it wants to grow. Attracting higher paying jobs could lead to faster growth, but they may be more difficult to attract. The average pay per employee of most of the industry groups that grew in recent years or were identified in the EOA is lower than that of other industry groups. Wholesale and Retail Trade; Health Care and Social Assistance; and Accommodation, Food Services, Arts, Entertainment, and Recreation industry groups have relatively low average pay per employee. The two highest paying industry groups in Sweet Home are Agriculture, Forestry, Fishing, and Hunting (\$61,354 per employee) and Finance and Insurance (\$56,442 per employee).

D. Site Visit and Engagement Summary

The ECONorthwest project team visited the NSHA to observe existing land use conditions and meet with key stakeholders about potential development opportunities. The engagement activity yielded key information about ongoing efforts to redevelop the NSHA.

Old Mill and Quarry Park Sites

The Old Mill site, located at the southwest end of the NSHA, is expected to be the centerpiece of future developments in the NSHA. A portion of the site is zoned for industrial and commercial uses, and approximately 18 lots are currently platted for residential use. Sweet Home Real Estate Restoration, the new owner of the site, has desires of creating an events center and additional commercial uses, beginning with the Southwest side of the site, east of 18th Avenue and south of Tamarack Street. The Sweet Home City Council plans to grow its tourism industry through outdoor events and recreation on the Old Mill site.

Moreover, improvements on the Old Mill site will create new amenities as well as new access points to the City's Quarry Park site. The City plans for the Quarry Park site to host 5 to 6 significant events per year. At the top of the list is creating a permanent site for the annual Oregon Jamboree, which is currently held on public school lands and brings in about 12,000 annual visitors.

A potential land use for the Old Mill site is new lodging space. Currently, accommodations for larger events are primarily limited to camping and RV. There are two small motels in Sweet Home and one hotel in Lebanon, which is about a 15-minute drive away. Additional local lodging would help support the desire for future large events.

To this end, Sweet Home Real Estate Restoration has already started plans for road improvements between 18th Avenue and Clark Mill Road. The City also has plans to widen 24th Avenue, which is located between 18th Avenue and Clark Mill Road, and provides direct access to the Old Mill site. The site has already undergone significant environmental remediation in preparation for development. The final "*No Further Action*" determination from the Department of Environmental Quality is expected for this site towards the end of 2023. There are aims to improve the road system and install stubs for water and wastewater infrastructure.

Existing and Planned Developments

New residential and business locations are possible to the east of the Old Mill and Quarry Park sites. There are currently residential and industrial uses, and the City has approved a 42-lot subdivision for new houses, though recent market trends have made it more difficult to attract homebuilders. The industrial sites can have rail access with minor repairs, and the sites also have access to untreated water from a nearby City diverter. However, depending on the industrial use, the sites may require electrical improvements and significant gas improvements that link as far away as Albany, which is nearly 30 miles away.

The east end of the NSHA connects to Foster Lake, which already is a significant outdoor tourism attraction due to relatively constant water levels that allow for year-round aquatic access. The City hopes to develop a trail system connecting Foster Lake with the Santiam River, a lodge on the east side of Foster Lake, and an improved rail stop for the Lebanon Excursion train. Major property owners within the NSHA expressed interest and have shown initiative for collaborating to bring these visions to fruition.

E. Identified Land Use Alternatives

Based on the review of the 2017 EOA, new employment data, and input from key stakeholders, ECONorthwest identified areas of economic opportunity for the NSHA and potential land use alternatives that could be considered to advance the community's goals.

Areas of economic opportunity are related to tourism and commercial and industrial activities. Tourism-related employment is currently supported by the Recreation Commercial zone, which makes up a large majority of the NSHA. On the other hand, current zoning is a primary barrier to commercial and industrial development. If allowed by zoning, "the types of large businesses that might consider locating in Sweet Home on Recreation Commercial sites include: general manufacturers, food processors, wood products manufacturers, heavy industrial manufacturers, or regionally scaled clean tech manufacturers. The area that may best support these employment uses is the relatively flat areas along the rail line."⁶ If also allowed by-right, new residential uses could come to parts of the NSHA that are further from the rail line and closer to the South Santiam River. Alignment of the City's zoning to the recently updated Comprehensive Plan will support economic growth in the NSHA.

Land Use Alternative 1

The Old Mill and the Quarry Park sites could be best developed within the current Recreation Commercial zone. There are ongoing plans for tourism-related developments on the sites, and the City supports growing its tourism economy through attractions on these sites. The Old Mill site could develop with new eating and drinking establishments, recreational retail shops, amusement or recreation services, and lodging spaces for people attending large events, like the Oregon Jamboree, which may be hosted at the Quarry Park site in the future. Among sites in the NSHA, the Old Mill site is positioned to have the best access points to U.S. Route 20 due to ongoing plans for road and rail crossing improvements. U.S. Route 20 is likely to bring in visitors from larger cities in the Willamette Valley and cities in Central Oregon. However, for the remainder of the NSHA, maintaining current zoning in this alternative would not leverage market opportunities for residential, commercial, and industrial investments that are best aligned with the site locations and advantages in the NSHA.

Land Use Alternative 2

The best economic use for the Old Mill and the Quarry Park sites is the same for land use alternatives 1 and 2. The two sites are well-positioned for tourism-related developments. Other

⁶ ECONorthwest, Sweet Home Economic Opportunities Analysis, Final Report, April 2017.

parts of the NHSA face challenges to development because the current zoning does not support developments for new businesses and residents. However, recent Comprehensive Plan updates and future zoning changes can support greater economic opportunities through development in commercial and industrial industries, as well as new residential development.

New businesses could locate near the railroad to have easier access to rail or road. U.S. Route 20 is accessible via Clark Mill Road, and improvements to Clark Mill Road are under consideration. The new businesses could be related to a few of the target industries for employment growth: manufacturing, small-scale warehousing, distribution and wholesale, and services for seniors, such as medical services. To make the growth of these industries more likely, the City would need to provide more flexibility for employment-oriented uses that are aligned with the City's vision for the NSHA. Allowed uses could include light industrial, heavy industrial, medical offices, and medical supply stores.

For residential use, there already is an approved plan for a 42-lot subdivision. Future residential developments, including small-scale multifamily and senior housing, could cluster around existing and planned residential areas. Vacation homes and more recreation-oriented housing types could be desirable closer to the South Santiam River due to greater accessibility to natural amenities and greater distance apart from commercial and tourism businesses. The City would need to evaluate the types of housing they want to allow by-right by reviewing allowed uses and development standards for residential uses in the NSHA. This could mean either a change to the Recreation Commercial zone or rezoning parts of the NSHA to one of the City's residential zones. These efforts could be concentrated near areas that have existing or planned residential developments.

FUTURE FORECASTING - TECHNICAL MEMORANDUM #5

DATE:	October 8, 2024	
TO:	Project Management Team	- Current
FROM:	Garth Appanaitis DKS Associates	4
	Eileen Chai I DKS Associates	
	Emily D'Antonio DKS Associates	
SUBJECT:	Sweet Home TSP and NSHA Refinement Plan	
	TM#5 Future System Conditions	

INTRODUCTION

This memorandum summarizes an assessment of transportation conditions in the Sweet Home Urban Growth Boundary (UGB) under a year 2045 "no-build" scenario. This scenario includes projected development and land use changes through the planning horizon but does not assume any additional improvements to the transportation system beyond those that currently exist. Future phases of analysis will confirm and evaluate potential transportation improvements.

FUTURE TRAFFIC FORECASTING PROCESS

Future traffic forecasting is an important step in the transportation planning process and provides estimates of future travel demand. This memorandum documents the traffic forecasting methodology and results associated with the small community model developed for the Sweet Home Transportation System Plan (TSP) Update. The small community modeling approach, in conjunction with post-processing, provides study intersection turn movement forecasts for the 2045 TSP horizon year.

METHODOLOGY OVERVIEW

The forecasting methodology associated with the small community model (also referred to as enhanced zonal cumulative analysis or EZCA) expands upon a cumulative analysis approach, as defined in the Oregon Department of Transportation (ODOT) Transportation Planning Analysis Unit's (TPAU's) *Analysis Procedures Manual Version 2 (APM V2)*. In the context of the traditional 4-step travel demand model approach, the typical cumulative analysis is used for trip generation and trip distribution purposes only. The result is a trip table (for growth increment only) that is used as an input into traffic assignment, where analysis is completed by manually assigning the new trips to a street network and then adding them to existing traffic volumes to estimate future volumes.

SWEET HOME TSP . TECHNICAL MEMO #5 . OCTOBER 8, 2024

1

The enhanced zonal cumulative analysis tool uses the same trip generation and trip distribution methodology as the typical cumulative analysis, but it applies the methodology to all land uses within the city (i.e., both existing uses as well as any future development based on a land use inventory). The enhanced tool then uses Visum modeling software and incorporates intersection node delay to complete the equilibrium trip assignment. The result is an improved traffic volume forecasting tool that dynamically assigns both new and existing trips to the transportation network using an equilibrium assignment procedure that represents routing choice more accurately than a manual assignment. It is more accurate due to its responsiveness to varying levels of congestion and delay as traffic patterns change. This tool enables a more comprehensive analysis of future conditions and potential TSP alternatives.

The following sections of this memorandum detail each component of the travel forecast methodology associated with the small community model, including the following:

- The Roadway Network,
- Transportation Analysis Zones (TAZs)
- Land Use
- Travel Demand

The resulting 2045 future projected volumes are also provided.

FORECAST TOOL COMPONENTS

The following sections summarize the forecast tool components that are used to forecast future traffic volumes.

ROADWAY NETWORK

The roadway network included in the Sweet Home TSP Visum forecast tool consists of the arterial and collector roadways along with most local public streets within the Sweet Home Urban Growth Boundary (UGB). The roadway network is also extended beyond the UGB to capture potential regional routing decisions that could result from future trips to/from Sweet Home and/or conditions in the local street system. These areas outside the UGB included in the model for potential routing purposes include:

- N River Drive (north side of the model area)
- Wiley Creek Road (east side of the model area)
- Shea Hill Drive (east side of the model area)

An existing roadway network was created using centerline data from Open Street Map. Additional roadway attributes were added based on an existing conditions inventory that included posted speeds, traffic control, lane geometries, and the number of travel lanes. The purpose of the existing conditions network was to configure the forecast tool and act as a base for the development of the future tool.

The 2045 future year baseline roadway network was then developed to represent the 2045 No-Build conditions. No committed transportation improvements were identified within the model area that are expected to influence traffic routing. Therefore, the 2045 No Build network is identical to the 2021 network. The 2045 future year network will be further refined as it is used to perform analysis of the various transportation alternatives and improvements to be analyzed for the Sweet Home TSP Update.

TRANSPORTATION ANALYSIS ZONES

For transportation forecasting purposes, the Sweet Home UGB was divided into 40 TAZs, which represent the location of various land uses and sources of vehicle trip generation within the city. These TAZ boundaries were determined based on geographical and physical features, allowing the best representation of access for an area, along with maintaining homogenous land use types as much as possible (e.g. residential, commercial, etc.). Centroid connectors were located to best represent access to the street network and major parking facilities. Additionally, 4 rural zones are located to the north of Sweet Home. These rural zones are included to capture land use and trip pattern interactions with areas inside the UGB. The internal TAZs are shown in Figure 1.

FIGURE 1. SWEET HOME TAZ MAP

LAND USE

Land use is a key factor affecting travel demands placed on Sweet Home's transportation system. The location, density, type, and mix of land uses have a direct impact on traffic levels and patterns. An existing 2021 land use inventory and future 2045 land use projection were performed for each TAZ in the Sweet Home UGB based on existing uses, zoning, and anticipated development patterns.

The housing and employment forecasts used for this TSP analysis are based on several key sources of data:

- The Coordinated Population Forecast, 2015 through 2065, for Sweet Home County Urban Growth Boundaries (UGB) and Area Outside UGBs, prepared by the Portland State University (PSU) Population Research Center, which provided the population forecast data.
- The 2021 American Community Survey, which provided average persons per household data.
- Oregon Employment Department inventory of Covered Employers and Employment that summarizes the job type and location of employers.
- The 2017 Sweet Home Economic Opportunities Analysis provided future employment projections in the city.

The base 2021 land use inventory approximated the number of households and the amount of retail employment, service employment, educational employment, and other employment that currently exist in each TAZ. Existing employment land uses within Sweet Home were obtained from Oregon Employment Department data and a review of other data sources (tax assessor data, census data, zoning data, and existing aerial photography). The existing land uses correspond to a population of 9,461 residents, which is based on PSU Population Research Center estimates. This corresponds to approximately 3,931 households based on an average household size of 2.46 (US Census data).

The future 2045 land use projection is an estimate of the amount of each land use (household and employment) that the TAZ could reasonably accommodate given market conditions and the current build-out of vacant or underdeveloped lands, assuming Comprehensive Plan zoning. The projected land uses correspond to a year 2045 population projection of approximately 11,246 residents. This corresponds to a 19 percent growth through the planning horizon.

A summary of the existing land use estimates and future projections for the entire Sweet Home UGB is listed in Table 1.

TABLE 1. SWEET HOME UGB LAND USE SUMMARY

LAND USE / GROWTH CATEGORY	EXISTING 2021 QUANTITIES	TOTAL GROWTH 2021 TO 2045	FUTURE 2045 QUANTITIES
POPULATION	9,461	1,785 (+19%)	11,246
HOUSEHOLDS	3,986	726 (+18%)	4,712
EMPLOYEES			
RETAIL	398	75 (+20%)	473
SERVICE	275	52 (+19%)	327
INDUSTRIAL	219	41 (+19%)	260
EDUCATION	357	67 (+19%)	424
OTHER	996	188 (+18%)	1184
TOTAL	2245	423 (+19%)	2668

TRAVEL DEMANDS

Travel demand on roadways and at intersections in Sweet Home was estimated using the ODOT APM V2 methodology for the EZCA method. This methodology included estimating all vehicle trips (not just growth increments), adjusting the trip distribution to reduce household-to-household trips, and using Visum modeling software to perform the trip assignment. Travel forecasting was performed for the 30th highest hour conditions for both 2021 and 2045. The purpose of the 2021 forecast tool was to calibrate the network in preparation for developing the 2045 network, which would then be used for future analysis.

The travel demand analysis includes the translation of City land use information into motor vehicle trips. This was done for each of the TAZs based on the existing and projected land uses described previously in the Land Use section of this memorandum. Trips traveling to and from the external TAZs were also estimated for both the 2021 and 2045 analysis years. The following section describes the methodology used to determine the different trip types and how the trips were distributed and assigned to the roadway network.

TRIP TYPES

Travel forecast projections involve the determination of three distinct types of trips, which are categorized based on whether their origin and/or destination (i.e., the trip ends) are internal or external to the Sweet Home UGB. The three trip types and how they apply to Sweet Home are:

• **External-External (E-E) Trips** do not have an origin or destination in Sweet Home and either do not stop or only make a very minor stop while passing through the Sweet Home

UGB. These trips are typically referred to as "through traffic." An example would be a person from Corvallis traveling on US 20 while heading to Bend.

- Internal-External (I-E) Trips originate in Sweet Home and are traveling to a location outside of the Sweet Home UGB (e.g., someone working in Sweet Home that returns north to Lebanon in the evening), while External-Internal (E-I) Trips originate outside of the Sweet Home UGB and are traveling to a location within Sweet Home (e.g., someone from Lebanon traveling into Sweet Home for shopping).
- **Internal-Internal (I-I) Trips** travel from one location within the Sweet Home UGB to another location within the UGB. An example would be a person traveling between their office and home within Sweet Home.

EXTERNAL TRIP ENDS

External trip ends are the origin and/or destination of E-E, I-E, or E-I trips and were estimated for the 30th highest hour conditions at each of the gateways for both 2021 and 2045.

The number of 2021 external trip ends was based on existing traffic volumes at key gateways:

- North: US 20 north of Osage St
- West: Oregon 228 (Halsey-Sweet Home Highway) west of Fern Ridge Rd/Rowell Hill Rd
- South: Old Holley Road east of Elkhorn St
- South: 21st Avenue southwest of Cedar St
- South: Ames Creek Road west of Surrey Ln
- South: 43rd Avenue south of Coulter Ln
- South: 50th Ave to the south of Airport Rd
- South: Wiley Creek Road east of Riggs Hill Rd
- East: Shea Hill Drive east Riggs Hill Rd
- East: US 20 east of Riggs Hill Rd/Shea Viewpoint
- North: N River Drive east of Foster Dam Rd
- North: Pleasant Valley Road north of Northside Drive

Replica¹, a web-based data model that includes travel estimation, was used to estimate the portion of through traffic compared to the portion of traffic with either an origin or destination within Sweet Home. The Replica data model is based on "big data" (mobile network) sources and reflects travel trends experienced over a duration of time. The datasets provide an estimate of travel behavior based on sampled conditions. The regional travel patterns are summarized in Table 2.

¹ https://www.replicahq.com/

TABLE 2. REGIONAL TRAVEL PATTERNS OBSERVED AT EXTERNAL GATEWAYS

	PERCENT ENTE	RING TRAFFIC	PERCENT EXITING TRAFFIC		
GATEWAY	WITH A DESTINATION IN SWEET HOME	WITH A WITH AN ESTINATION EXTERNAL IN SWEET DESTINATION HOME		WITH AN EXTERNAL ORIGIN	
NORTH: US 20 NORTH OF OSAGE ST	72%	28%	87%	13%	
WEST: OR 228 EAST OF FERN RIDGE RD/ROWELL HILL RD	78%	22%	72%	28%	
SOUTH: OLD HOLLEY ROAD EAST OF ELKHORN ST	63%	37%	83%	17%	
SOUTH: 21ST AVENUE SOUTHWEST OF CEDAR ST	33%	67%	35%	65%	
SOUTH: AMES CREEK ROAD WEST OF SURREY LN	42%	58%	40%	60%	
SOUTH: 43RD AVENUE SOUTH OF COULTER LN	36%	64%	50%	50%	
SOUTH: 50TH AVE TO THE SOUTH OF AIRPORT RD	60%	40%	55%	45%	
SOUTH: WILEY CREEK ROAD EAST OF RIGGS HILL RD	33%	67%	52%	48%	
EAST: SHEA HILL DRIVE EAST RIGGS HILL RD	83%	17%	50%	50%	
EAST: US 20 EAST OF RIGGS HILL RD/SHEA VIEWPOINT	20%	80%	17%	83%	
NORTH: N RIVER DRIVE EAST OF FOSTER DAM RD	59%	41%	35%	65%	
NORTH: PLEASANT VALLEY RD NORTH OF NORTHSIDE DRIVE	67%	33%	65%	35%	
AVERAGE OF ALL GATEWAYS	54%	46%	53%	47%	

Source: Replica Trip Count Data taken from 3:00-7:00 pm

Table 2 indicates that most external gateways have a trip end (origin or destination) in Sweet Home. Approximately 20 to 80 percent of external trips (varies by location) are destined for another external location as a "through trip." The east end of US 20 includes the highest portion of external trips – approximately 80 percent of these trips travel through Sweet Home.

The external trip ends that have an internal pair are modeled to pair with the internal trip ends of corresponding land uses within the city (e.g., housing and employment). This modeling process is explained further in the "Trip Distribution" section of this memorandum.

Growth estimates were applied to each gateway to determine 2045 external trip ends for through traffic. The ODOT Future Projected Annual Average Daily Traffic Tables provided data for estimating future growth. The annual growth rates and associated growth factors for each external gateway are shown in Table 3.

GATEWAY	2021 AADT	2041 AADT	ANNUAL GROWTH RATE	GROWTH FACTOR (FROM 2021 TO 2045)
US 20, EAST OF OSAGE ST	10614	11000	0.18%	1.04
OR 228, EAST OF FERN RIDGE RD	4318	4500	0.21%	1.05
US 20, EAST OF RIGGS HILL RD	2262	2400	0.31%	1.07

TABLE 3.	EXTERNAL	GATEWAY	GROWTH	FORECASTS	FOR	SWEET	HOME

Source: ODOT Future Projected Annual Average Daily Traffic Tables, Calculated annual growth forecasts

As listed in Table 3, traffic volumes at external gateways are expected to grow by approximately five percent (four to seven percent) total over the period from 2021 to 2045.

INTERNAL TRIP ENDS

The number of internal trip ends in Sweet Home was determined using a land use-based trip generation methodology, which translates land use quantities (number of dwelling units or number of employees) into vehicle trip ends (number of vehicles entering or leaving a TAZ) based on empirically derived trip generation rates. These rates were generally developed based on initial values from the Institute of Transportation Engineers (ITE) *Trip Generation Manual* as a starting point that have been further adjusted based on similar local modeling efforts in other Oregon communities.² The trip rates that have been developed from experience in other communities were used as a starting point and further calibrated to observed traffic counts in Sweet Home. Local calibration to the trip rates using Sweet Home traffic counts included a combination of strategies that compared observed count data with known land use quantities (e.g., road(s) serving a

² Trip generation rates for the small community forecast tool have evolved through the development of several small community models in Oregon. Original trip generation estimates were based on ITE Trip Generation rates, however, those rates were consistently determined to be too high relative to observed traffic count data. While ITE trip generation data may accurately reflect driveway counts (or trip ends) for a specific use during that use's peak hour, the small community tool represents trips (including both ends of the trip) during a peak hour common to all the uses, which may have slightly different individual peaking characteristics. The small community tool uses a limited number of trip generation estimates (typically retail, service and other employment) to represent all the various land use types within a community, and one single ITE rate does not reflect the variety of uses, even within a category (e.g. retail). Through the development of small community models in cities including Sisters, Hood River, Canby, Junction City, Tillamook, Scappoose, and Silverton, DKS has observed trip generation rates consistently lower than ITE would indicate. Each of these tools were calibrated to traffic data collected for the respective community. The prior rates were used as a starting point for Sweet Home and calibrated to traffic counts observed in Sweet Home.

residential development of known units, or driveways serving primarily retail uses). Weekday PM peak hour trip generation rates used in the forecast tool are listed in Table 4.

LAND USE	TRIPS IN	TRIPS OUT	TOTAL TRIP ENDS
SINGLE-FAMILY HOUSEHOLDS (PER DWELLING UNIT)	0.50	0.30	0.80
MULTI-FAMILY HOUSEHOLDS (PER DWELLING UNIT)	0.40	0.20	0.60
RETAIL (PER EMPLOYEE)	1.88	2.12	4.00
SERVICE (PER EMPLOYEE)	0.73	0.92	1.65
EDUCATION (PER EMPLOYEE)	0.84	0.91	1.75
OTHER (PER EMPLOYEE)	0.05	0.25	0.30

TABLE 4. AVERAGE WEEKDAY PM PEAK HOUR TRIP GENERATION RATES BY LAND USE

Source: Institute of Transportation Engineers Trip Generation Manual and local traffic counts

By applying these trip generation rates to the TAZ land uses, the number of trips entering and exiting each TAZ in Sweet Home was estimated. Internal trip estimates were obtained for both the existing 2021 land uses and the projected 2045 land uses.

TRIP DISTRIBUTION

Trip distribution was performed to estimate how many trips travel between each of the internal TAZs. Distribution for trips traveling to and from internal zones (i.e., trips having at least one internal trip end) was based on weighting the attractiveness of each zone, as measured by the number of trip ends generated by the zone.

The forecasting model is based on a trip table that describes the internal and external trip ends for each trip within the network. To develop this trip table, External-to-External (E-E) trips are matched based on the external trip probabilities. Next, all remaining external trips (I-E and E-I) are paired with appropriate internal trip ends. These trips represent the inbound and outbound travel for Sweet Home residents and employees, respectively. Finally, the Internal-Internal (I-I) trip pairs are determined based on the land uses within Sweet Home. Note that the rural zones adjacent to Sweet Home, but outside the UGB, were also considered for I-I trip purposes.

TRIP ASSIGNMENT

Trip assignment involves the determination of the specific travel routes taken by the trips within the transportation network. This step was performed using Visum modeling software. Forecast tool inputs included the transportation network (i.e., road and intersection locations and characteristics, as determined from maps and field inventories) and a trip distribution table (described in prior sections). Iterated equilibrium assignment was then performed using estimated travel times along roadways and delays at intersection movements. The path choice for each trip was based on minimal travel times between locations. Forecast tool outputs include traffic volumes on roadway segments and at intersections.

CALIBRATION

A model calibration was performed on the 2021 base year forecast tools by comparing forecast tool turn volumes at the Sweet Home TSP study intersections with actual counted (measured) 2021 traffic volumes. A plot comparing the measured traffic volumes and the base year forecast tool volumes for all study intersection turn movements was analyzed to evaluate the accuracy of each forecast tool and is shown in Figure 2. As shown in Figure 2, the forecast tool (model) is generally reflective of the traffic counts (R² is 0.97 and is very close to the target of 1.0). Further, the y value of 1.048 indicates that the model is only narrowly overestimating traffic counts at 4.8 percent, which is well within the range of daily traffic fluctuations.

FIGURE 2. COMPARISON OF OBSERVED TURN MOVEMENT COUNTS WITH MODELED TRAFFIC VOLUMES (PM PEAK HOUR)

FORECAST TOOL VOLUMES AND POST-PROCESSING

Forecast tool traffic growth plots (2045 minus 2021) for the design hour forecast tool are included in the appendix. While the travel demand forecast tools were calibrated to local conditions and volumes, raw volumes from the tools were not used for capacity analysis. Rather, motor vehicle turn movement volume forecasts will be developed using post-processing methods consistent with the ODOT APM V2. This approach is derived from methodologies outlined in the National Cooperative Highway Research Program (NCHRP) Report 765, *Analytical Travel Forecasting Approaches for Project-Level Planning and Design*.

The post-processing methodology involves estimating trip growth at the intersection approach level (i.e., volume differences between base and future forecast tools), scaling the growth by the number of forecast years (i.e., forecast years divided by the difference in forecast tool years), and adding these volumes to existing traffic counts. Engineering judgment is used as part of the post-processing methodology, with the routing decisions identified by the forecasting tool serving as a reference for making volume adjustments. The results of this process are future-year forecasts derived from the Sweet Home enhanced cumulative analysis forecasting tool that are calibrated to observed data. The year 2045 traffic volume forecasts will serve as a future base volume forecast from which future conditions will be evaluated in subsequent memoranda. The 2045 traffic volume forecasts are included in the appendix.

FUTURE 2045 CONDITIONS

The future 2045 no-build traffic volumes were evaluated for the study intersections to determine the intersection operating conditions. Under existing conditions, only a single intersection (Main Street / Pleasant Valley Road) exceeds the mobility target. However, the additional growth in traffic volumes, particularly in areas parallel to and crossing the highway adjacent to the growth that is projected to occur in the North Sweet Home Area (NSHA), would cause three more locations to exceed the mobility targets:

- Main Street (US 20) / 22nd Avenue
- Main Street (US 20) / Clark Mill Road
- Main Street (US 20) / 47th Avenue

This increase in delay is due to an increase in vehicle volumes within the NSHA and indicates that additional connectivity within the area, as well as connecting to the rest of the city, will be important in future development.

TABLE 5: EXISTING (2021) AND FUTURE (2045) TRAFFIC OPERATIONS AT STUDY INTERSECTIONS - WEEKDAY PM PEAK HOUR

	CONTROL	MOBILITY		EXIST	ING		FUTURE 2045			
INTERSECTION	ΤΥΡΕ ^Α	STANDARD	LOS	DELAY ^B (SEC)	V/C ^c	LOS	DELAY (SEC)	V/C		
1. MAIN STREET (U.S. 20) AND PLEASANT VALLEY ROAD	TWSC	v/c≤0.85 A/F 10/97 0.23 / 0.91 ,		A/F	10/>100	0.25 / 1.05				
2. MAIN STREET (U.S. 20) AND HOLLEY ROAD (HWY 228)	Signal	v/c ≤ 0.90	c≤0.90 B 12 0.65 B 13		13	0.70				
3. MAIN STREET (U.S. 20) AND 12 TH AVENUE	Signal	v/c ≤ 0.90	A	5	0.64	A	4	0.70		
4. MAIN STREET (U.S. 20) AND 15 TH AVENUE	Signal v/c ≤ 0.9		A	5	0.68	A	8	0.88		
5. MAIN STREET (U.S. 20) AND 18 TH AVENUE	Signal	v/c ≤ 0.90	A	6	0.67	A	7	0.84		
6. MAIN STREET (U.S. 20) AND 22 ND AVENUE	TWSC	v/c ≤ 0.90	A/E	10/35	0.20/ 0.34	B/F	12/>100	0.32/ 1.58		
7. MAIN STREET (U.S. 20) AND 24 TH AVENUE	TWSC	v/c ≤ 0.90	A/D	9/27	0.19/ 0.15	B/F	12/>100	0.34/ 0.58		
8. MAIN STREET (U.S. 20) AND CLARK MILL ROAD	AIN ET (U.S. AND TWSC v/c K MILL		A/C	9/19	0.17/ 0.16	B/F	13/>100	0.36/ 3.06		
9. MAIN STREET (U.S. 20) AND 44 TH AVENUE	TWSC	v/c ≤ 0.85	A/C	9/22	0.15/ 0.18	B/F	10/>100	0.25/ 0.77		
10. MAIN STREET (U.S. 20) AND 47 TH AVENUE	TWSC	v/c ≤ 0.85	A/C	A/C 9/19 0.14/ 0.16 A/F 10/>1		10/>100	0.26/ 1.67			

INTERSECTION	CONTROL	MOBILITY		EXIST	ING	FUTURE 2045			
INTERSECTION	ΤΥΡΕ ^Δ	STANDARD	LOS	DELAY ^B (SEC)	V/C ^c	LOS	DELAY (SEC)	V/C	
11. MAIN STREET (U.S. 20) AND 49 TH AVENUE	TWSC	v/c ≤ 0.85	A/B	9/14	0.12/ 0.13	A/C	9/17	0.15/ 0.24	
12. MAIN STREET (U.S. 20) AND 53 RD AVENUE	TWSC	v/c ≤ 0.85	v/c ≤ 0.85 A/C 8/20 0.23/ 0.15 A/D 8/28		8/28	0.26/ 0.20			
13. MAIN STREET (U.S. 20) AND 54 TH AVENUE	TWSC	v/c ≤ 0.85	c≤0.85 A/B 8/13 0.25/0.08 A/B 8/		8/11	0.28/0.07			
14. MAIN STREET (U.S. 20) AND 60 TH AVENUE (FOSTER DAM ROAD)	TWSC	VSC v/c≤0.85 A/C 8/19		8/19	0.18/ 0.09	A/C	8/22	0.20/ 0.05	
15. HOLLEY ROAD (HWY 228) AND 1 ST AVENUE	TWSC	v/c ≤ 0.95	95 A/C 8/16 0.25/ 0.29 A/C		8/17	0.26/ 0.33			
16. HOLLEY ROAD (HWY 228) AND OAK TERRACE	TWSC	SC v/c ≤ 0.95 A/C 8/16 0.17/ 0.23		0.17/ 0.23	A/C	8/18	0.20/ 0.25		
17. LONG STREET AND 18 [™] AVENUE	AWSC	LOS D	В	10	0.32	В	11	0.37	
18. LONG STREET AND 43 RD AVENUE	AWSC	LOS D	А	8	0.11	A	9	0.23	
19. ELM STREET AND 10 [™] AVENUE	TWSC	LOS D	S D A/B 7/11 0.06/ 0.08 A,		A/B	7/11	0.08/ 0.08		

A. AWSC: All Way Stop Control, TWSC: Two Way Stop Control

B. Overall intersection measures reported for signal and AWSC intersections. The worst approach for major/minor approaches is reported for TWSC intersections.

C. Values in Bold exceed mobility standards.

MULTI-MODAL ASSESSMENT

PEDESTRIAN NETWORK

Sidewalks are located in all of the commercial areas along Main Street and are well connected with most streets. Development of the NSHA plan will improve pedestrian connectivity in North Sweet Home through the development of a trail system as well as improvements to the roadway network.

BICYCLE NETWORK

There are several designated bike routes and lanes within Sweet Home's downtown area, including portions of Main Street and Long Street. There are no separated cycling facilities in Sweet Home, but there are painted bike lanes present along a large portion of Main Street and one segment of Long Street between 22nd Avenue and 25th Avenue. Like with the pedestrian network, development of the NSHA plan will improve cyclist connectivity in North Sweet Home through the development of a multi-use path and improvements to the roadway network.

TRANSIT NETWORK

As noted in Technical Memo #3, transit service is provided in Sweet Home through three main routes:

- The Linn Shuttle
- The Sweet Home Shopper
- Dial-A-Bus Service

FUTURE DEFICIENCIES

ROADWAY NETWORK

As previously noted, projected future vehicle volumes will result in the exceeding of mobility targets at four study intersections. Improving traffic controls and/or adding new routes within the Sweet Home roadway network for traffic using Clark Mill Road, 22nd Ave, 47th Ave, and Pleasant Valley Road will be necessary to mitigate the delay from these volume increases.

PEDESTRIAN NETWORK

With increases in vehicle volumes due to the NSHA Plan, sidewalk deficiencies along Clark Mill Road, 47th Avenue, and Long Street will be important to fill. Currently, vehicle volumes along Clark Mill Road and 47th Avenue are low, but these will be key tie in streets to the new roadway network developed in the area. Completing the sidewalk network along these streets will also provide better pedestrian connections to the newly developed area for those currently living in West Sweet Home. In addition to filling in the sidewalk gaps, there is also a need to provide safer and convenient crossing opportunities on Main Street. Pedestrian Network gaps are shown in Figure 3 below.

BICYCLIST NETWORK

The bike network within Sweet Home will be improved through the development of the NSHA plan and the addition of a new multi-use path. Improving bicycle facilities along Long Street will improve east west connectivity and better connect West Sweet Home with future NSHA development.

Main Street currently has a high level of stress (LTS) for cyclists even with the current marked bike lane. Long Street, OR 228, and other arterials or collectors with an LTS of 3 or greater are places in need of improved cycling infrastructure. A map of current LTS within Sweet Home is shown in Figure 4 below.

FIGURE 4. BICYCLE LEVEL OF STRESS

TRANSIT

The Linn Shuttle and Sweet Home Shopper currently provide most transit connections within Sweet Home as previously noted. These services do not currently provide access to the NSHA. Filling that transit gap will be optimal to provide access to the newly developed area.

ATTACHMENTS

CONTENTS

ATTACHMENT A: HOUSEHOLD GROWTH BY TAZ ATTACHMENT B: EMPLOYMENT GROWTH BY TAZ ATTACHMENT C: 2045 NO BUILD TRAFFIC VOLUMES ATTACHMENT D: TRAFFIC GROWTH PLOTS ATTACHMENT E: FUTURE CONDITION HCM REPORTS

ATTACHMENT A: HOUSEHOLD GROWTH BY TAZ

FIGURE 5. 2021-2045 PROJECTED HOUSEHOLD GROWTH BY TAZ

ATTACHMENT B: EMPLOYMENT GROWTH BY TAZ

FIGURE 6. 2021-2045 PROJECTED EMPLOYMENT GROWTH

ATTACHMENT C: 2045 NO BUILD TRAFFIC VOLUMES

TABLE A1: 2045 PM PEAK HOUR 30 HV TRAFFIC VOLUMES

N/S	E/W	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
Pleasant Valley Rd	Hwy 20 (Main St)	0	0	5	100	0	50	75	755	0	0	565	110
Hwy 228 (Holley Road)	Hwy 20 (Main St)	125	0	225	0	5	5	5	810	90	195	605	0
12th Ave	Hwy 20 (Main St)	45	20	20	25	25	35	65	900	75	60	790	20
15th Ave	Hwy 20 (Main St)	20	40	25	85	30	20	65	895	60	70	890	50
18th Ave	Hwy 20 (Main St)	95	35	100	65	15	60	50	935	50	50	940	35
22nd Ave	Hwy 20 (Main St)	40	5	35	30	10	20	5	1055	55	15	945	30
24th Ave	Hwy 20 (Main St)	20	0	5	5	0	35	15	1055	50	5	1005	5
Clark Mill Rd	Hwy 20 (Main St)	15	0	30	45	5	170	230	760	115	65	850	50
44th Ave	Hwy 20 (Main St)	50	0	20	10	0	20	20	695	105	60	740	0
47th Ave	Hwy 20 (Main St)	15	10	5	65	5	260	210	495	5	5	460	50
49th Ave	Hwy 20 (Main St)	35	0	50	0	0	0	0	440	65	35	440	0
53rd Ave	Hwy 20 (Main St)	30	0	5	5	10	35	45	390	50	5	395	10
54th Ave	Hwy 20 (Main St)	0	0	0	0	0	35	15	370	10	0	350	5
60th Ave (Foster Dam Rd)	Hwy 20 (Main St)	10	0	0	5	0	60	85	290	5	0	275	10
1st Ave	Hwy 228 (Holley Road)	0	0	5	35	10	75	40	290	5	0	270	25
	Hwy 228 (Holley												
Oak Terrace	Road)	70	0	10	0	0	0	0	265	100	20	270	0
18th Ave	Long St	35	85	15	30	70	25	65	75	35	15	130	75
43rd Ave	Long St	35	25	5	10	40	65	65	50	50	0	25	10

DKS SWEET HOME TSP • TECHNICAL MEMO #5 • OCTOBER 8, 2024

TABLE A2: 30 HV TRAFFIC GROWTH (2021 TO 2045)

N/S	E/W	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
Pleasant Valley Rd	Hwy 20 (Main St)	-1	0	1	4	0	1	0	55	-2	-2	39	5
Hwy 228 (Holley Road)	Hwy 20 (Main St)	9	0	34	-2	1	1	-1	76	10	34	68	-1
12th Ave	Hwy 20 (Main St)	-2	2	1	-2	-1	2	2	144	13	18	170	6
15th Ave	Hwy 20 (Main St)	2	-2	7	13	7	-1	1	193	16	37	269	19
18th Ave	Hwy 20 (Main St)	25	13	33	36	6	30	14	243	1	7	325	15
22nd Ave	Hwy 20 (Main St)	13	0	14	5	0	-1	-1	359	10	6	380	4
24th Ave	Hwy 20 (Main St)	1	0	0	-1	0	2	1	443	5	2	451	1
Clark Mill Rd	Hwy 20 (Main St)	0	-1	2	34	4	130	197	207	57	34	346	43
44th Ave	Hwy 20 (Main St)	21	-1	9	6	0	9	10	234	41	25	287	-1
47th Ave	Hwy 20 (Main St)	10	9	2	51	3	211	178	62	-2	2	77	41
49th Ave	Hwy 20 (Main St)	14	0	21	0	0	0	0	55	22	13	77	0
53rd Ave	Hwy 20 (Main St)	2	-1	-2	1	5	15	14	53	3	1	59	4
54th Ave	Hwy 20 (Main St)	0	-1	-2	-2	-1	4	3	44	1	-1	45	1
60th Ave (Foster Dam Rd)	Hwy 20 (Main St)	1	0	0	1	0	11	14	31	-1	-2	36	0
1st Ave	Hwy 228 (Holley Road)	-1	-1	2	2	2	3	0	13	2	-2	29	1
Oak Terrace	Hwy 228 (Holley Road)	-1	0	-1	0	0	0	0	30	2	1	45	0
18th Ave	Long St	-1	18	1	4	4	2	21	1	1	1	2	26
43rd Ave	Long St	18	18	2	6	30	37	41	9	31	-1	-1	5

DKS SWEET HOME TSP • TECHNICAL MEMO #5 • OCTOBER 8, 2024

ATTACHMENT D: TRAFFIC GROWTH PLOTS

SweetHome Model Connectors

VISUM 2023.01 PTV AG

CommunityModel_Future_V1.ver

ATTACHMENT E: FUTURE CONDITION HCM REPORTS

Intersection

Int Delay, s/veh

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL S	BT SBR
Lane Configurations 🎽 🐴 🎁 👬	₽.
Traffic Vol, veh/h 75 755 0 0 565 110 0 0 5 100	0 50
Future Vol, veh/h 75 755 0 0 565 110 0 0 5 100	0 50
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0	0 0
Sign Control Free Free Free Free Free Stop Stop Stop Stop S	op Stop
RT Channelized None None None -	- None
Storage Length 150 100	
Veh in Median Storage, # - 0 0 0	0 -
Grade, % - 0 0 0	0 -
Peak Hour Factor 90 90 90 90 90 90 90 90 90 90 90	90 90
Heavy Vehicles, % 0 0 0 0 0 0 0 0 0 0 0	0 0
Mvmt Flow 83 839 0 0 628 122 0 0 6 111	0 56

Major/Minor	Major1		N	lajor2		N	/linor1		ľ	/linor2			
Conflicting Flow All	750	0	0	839	0	0	1319	1755	420	1275	1694	375	
Stage 1	-	-	-	-	-	-	1005	1005	-	689	689	-	
Stage 2	-	-	-	-	-	-	314	750	-	586	1005	-	
Critical Hdwy	4.1	-	-	4.1	-	-	7.5	6.5	6.9	7.5	6.5	6.9	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-	
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	868	-	-	804	-	-	117	86	588	126	94	628	
Stage 1	-	-	-	-	-	-	263	322	-	407	450	-	
Stage 2	-	-	-	-	-	-	677	422	-	468	322	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	868	-	-	804	-	-	99	78	588	116	85	628	
Mov Cap-2 Maneuver	-	-	-	-	-	-	99	78	-	116	85	-	
Stage 1	-	-	-	-	-	-	238	291	-	368	450	-	
Stage 2	-	-	-	-	-	-	617	422	-	419	291	-	
Approach	EB			WB			NB			SB			
HCM Control Delay s	0.9			0			11.2			142.4			
HCM LOS	0.0			Ū			B			F			

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	BLn1
Capacity (veh/h)	588	868	-	-	804	-	-	159
HCM Lane V/C Ratio	0.009	0.096	-	-	-	-	-	1.048
HCM Control Delay (s)	11.2	9.6	-	-	0	-	-	142.4
HCM Lane LOS	В	Α	-	-	А	-	-	F
HCM 95th %tile Q(veh)	0	0.3	-	-	0	-	-	8.4

HCM 6th Signalized Intersection Summary 2: Holley Rd (OR 228) & Main St (US 20)

05/23/2024

	≯	-	$\mathbf{\hat{z}}$	4	+	•	1	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	1	5	4 12			र्स	1		\$	
Traffic Volume (veh/h)	5	810	90	195	605	0	125	Ō	225	0	5	5
Future Volume (veh/h)	5	810	90	195	605	0	125	0	225	0	5	5
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Adj Flow Rate, veh/h	5	890	99	214	665	0	137	0	247	0	5	5
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	7	1521	679	273	2053	0	369	0	511	0	145	145
Arrive On Green	0.00	0.46	0.46	0.16	0.62	0.00	0.18	0.00	0.18	0.00	0.18	0.18
Sat Flow, veh/h	1667	3325	1483	1667	3413	0	1387	0	1483	0	803	803
Grp Volume(v), veh/h	5	890	99	214	665	0	137	0	247	0	0	10
Grp Sat Flow(s),veh/h/ln	1667	1663	1483	1667	1663	0	1387	0	1483	0	0	1606
Q Serve(g_s), s	0.2	12.0	2.4	7.5	5.8	0.0	5.3	0.0	7.9	0.0	0.0	0.3
Cycle Q Clear(g_c), s	0.2	12.0	2.4	7.5	5.8	0.0	5.6	0.0	7.9	0.0	0.0	0.3
Prop In Lane	1.00		1.00	1.00		0.00	1.00		1.00	0.00		0.50
Lane Grp Cap(c), veh/h	7	1521	679	273	2053	0	369	0	511	0	0	291
V/C Ratio(X)	0.75	0.58	0.15	0.78	0.32	0.00	0.37	0.00	0.48	0.00	0.00	0.03
Avail Cap(c_a), veh/h	329	2218	989	686	2218	0	699	0	854	0	0	317
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	1.00	0.00	0.00	1.00
Uniform Delay (d), s/veh	30.2	12.2	9.6	24.4	5.6	0.0	22.8	0.0	15.6	0.0	0.0	20.5
Incr Delay (d2), s/veh	46.3	0.5	0.1	3.7	0.1	0.0	0.5	0.0	0.5	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.2	4.1	0.7	3.1	1.6	0.0	1.8	0.0	2.6	0.0	0.0	0.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	76.5	12.7	9.7	28.0	5.7	0.0	23.3	0.0	16.2	0.0	0.0	20.5
LnGrp LOS	E	В	А	С	А	Α	С	Α	В	А	А	C
Approach Vol, veh/h		994			879			384			10	
Approach Delay, s/veh		12.7			11.1			18.7			20.5	
Approach LOS		В			В			В			С	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	13.9	31.8		15.0	4.2	41.5		15.0				
Change Period (Y+Rc), s	4.0	4.5		4.0	4.0	4.5		4.0				
Max Green Setting (Gmax), s	25.0	40.0		12.0	12.0	40.0		25.0				
Max Q Clear Time (g_c+l1), s	9.5	14.0		2.3	2.2	7.8		9.9				
Green Ext Time (p_c), s	0.7	13.2		0.0	0.0	10.1		1.1				
Intersection Summary												
HCM 6th Ctrl Delay			13.2									
HCM 6th LOS			В									

HCM 6th Signalized Intersection Summary 3: 12th Ave & Main St (US 20)

05/23/2024

* + + + + * * * * * + + + + +

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	A		<u> </u>	≜1 }			\$			\$	
Traffic Volume (veh/h)	65	900	75	60	790	20	45	20	20	25	25	35
Future Volume (veh/h)	65	900	75	60	790	20	45	20	20	25	25	35
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln 1	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Adj Flow Rate, veh/h	72	1000	83	67	878	22	50	22	22	28	28	39
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Percent Heavy Veh, %	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	551	2159	179	474	2302	58	214	38	34	160	56	67
Arrive On Green	0.69	0.69	0.68	0.69	0.69	0.68	0.10	0.10	0.10	0.10	0.10	0.10
Sat Flow, veh/h	629	3108	258	529	3315	83	719	376	335	402	556	667
Grp Volume(v), veh/h	72	535	548	67	440	460	94	0	0	95	0	0
Grp Sat Flow(s) veh/h/ln	629	1663	1704	529	1663	1735	1430	0	0	1625	0	0
Q Serve(q s) s	21	57	57	2.6	43	4.3	0.2	0.0	0.0	0.0	0.0	0.0
Cvcle Q Clear(q, c) s	6.4	57	5.7	8.3	4.3	4.3	2.3	0.0	0.0	21	0.0	0.0
Prop In I ane	1 00	0.1	0.15	1 00		0.05	0.53	0.0	0.23	0.29	0.0	0.41
Lane Gro Cap(c) veh/h	551	1155	1183	474	1155	1205	285	0	00	283	0	0
V/C Ratio(X)	0.13	0.46	0.46	0.14	0.38	0.38	0.33	0.00	0 00	0.34	0 00	0.00
Avail Cap(c, a) veh/h	765	1719	1762	654	1719	1794	656	0.00	0.00	712	0.00	0.00
HCM Platoon Ratio	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d) s/veh	3.8	27	2.7	4.6	2.5	2.5	16.9	0.0	0.0	16.8	0.0	0.00
Incr Delay (d2) s/veh	0.0	0.4	0.4	0.2	0.3	0.3	0.5	0.0	0.0	0.5	0.0	0.0
Initial O Delav(d3) s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfO(50%) veh/	/Inf) 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Unsig Movement Delay	s/veh	0.1	0.1	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I nGrn Delav(d) s/veh	4.0	31	31	48	28	28	17 4	0.0	0.0	17.3	0.0	0.0
InGro LOS	4.0	Δ	Δ	Δ	Δ	Δ	R	Δ	Δ	R	Δ	Δ
Annroach Vol. veh/h	Λ	1155	Л	Л	967	Π		Q/	Λ	U	05	Π
Approach Delay sluch		20			20			17 /			17 3	
Approach LOS		J.Z A			۲.J			17.4 R			17.5 R	
		A			А			D			D	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc),	S	31.2		8.0		31.2		8.0				
Change Period (Y+Rc), s	6	4.5		4.0		4.5		4.0				
Max Green Setting (Gma	ix), s	40.0		15.0		40.0		15.0				
Max Q Clear Time (g_c+l	l1), s	8.4		4.1		10.3		4.3				
Green Ext Time (p_c), s		18.3		0.2		14.6		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			4.2									
HCM 6th LOS			А									

HCM 6th Signalized Intersection Summary 4: 15th Ave & Main St (US 20)

05/23/2024

* + + * * * * * * * + *

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ኘ	- 11	1	- ሽ	- 11	1		4			4		
Traffic Volume (veh/h)	65	895	60	70	890	50	20	40	25	85	30	20	
Future Volume (veh/h)	65	895	60	70	890	50	20	40	25	85	30	20	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90	1.00	1.00	0.90	
Work Zone On Approach	h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	
Adj Flow Rate, veh/h	75	1029	0	80	1023	0	23	46	29	98	34	23	
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	
Percent Heavy Veh, %	0	0	0	0	0	0	0	0	0	0	0	0	
Cap, veh/h	455	2221		453	2221		134	124	66	254	57	31	
Arrive On Green	0.67	0.67	0.00	0.67	0.67	0.00	0.15	0.15	0.15	0.15	0.15	0.15	
Sat Flow, veh/h	560	3325	1483	557	3325	1483	217	830	440	801	380	206	
Grp Volume(v), veh/h	75	1029	0	80	1023	0	98	0	0	155	0	0	
Grp Sat Flow(s),veh/h/ln	560	1663	1483	557	1663	1483	1488	0	0	1387	0	0	
Q Serve(g_s), s	3.3	6.5	0.0	3.5	6.5	0.0	0.0	0.0	0.0	1.9	0.0	0.0	
Cycle Q Clear(g_c), s	9.7	6.5	0.0	10.1	6.5	0.0	2.6	0.0	0.0	4.5	0.0	0.0	
Prop In Lane	1.00		1.00	1.00		1.00	0.23		0.30	0.63		0.15	
Lane Grp Cap(c), veh/h	455	2221		453	2221		324	0	0	342	0	0	
V/C Ratio(X)	0.16	0.46		0.18	0.46		0.30	0.00	0.00	0.45	0.00	0.00	
Avail Cap(c_a), veh/h	598	3066		595	3066		594	0	0	590	0	0	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	
Uniform Delay (d), s/veh	n 5.8	3.5	0.0	5.9	3.5	0.0	17.0	0.0	0.0	17.7	0.0	0.0	
Incr Delay (d2), s/veh	0.2	0.2	0.0	0.3	0.2	0.0	0.4	0.0	0.0	0.7	0.0	0.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh	n/Ir0.3	1.1	0.0	0.3	1.1	0.0	0.8	0.0	0.0	1.4	0.0	0.0	
Unsig. Movement Delay	, s/veh												
LnGrp Delay(d),s/veh	6.1	3.7	0.0	6.2	3.7	0.0	17.4	0.0	0.0	18.4	0.0	0.0	
LnGrp LOS	Α	Α		Α	Α		В	Α	Α	В	Α	Α	
Approach Vol, veh/h		1104			1103			98			155		
Approach Delay, s/veh		3.9			3.9			17.4			18.4		
Approach LOS		А			А			В			В		
Timer - Assigned Phs		2		4		6		8					
Phs Duration (G+Y+Rc)	, S	33.3		10.6		33.3		10.6					
Change Period (Y+Rc),	s	4.5		4.0		4.5		4.0					
Max Green Setting (Gma	ax), s	40.0		15.0		40.0		15.0					
Max Q Clear Time (g_c+	⊦l1), s	11.7		6.5		12.1		4.6					
Green Ext Time (p_c), s	·	16.9		0.3		16.8		0.2					
Intersection Summary													
HCM 6th Ctrl Delay			5.3										
HCM 6th LOS			А										

Notes

Unsignalized Delay for [EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

HCM 6th Signalized Intersection Summary 5: 18th Ave & Main St (US 20)

ノーン・チャック イントナイ

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	- † Ъ		<u>۲</u>	_ ≜ t≽			4			- 4 >	
Traffic Volume (veh/h)	50	935	50	50	940	35	95	35	100	65	15	60
Future Volume (veh/h)	50	935	50	50	940	35	95	35	100	65	15	60
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	۱	No			No			No			No	
Adi Sat Flow, veh/h/ln	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Adj Flow Rate, veh/h	56	1051	56	56	1056	39	107	39	112	73	17	67
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh, %	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	367	1976	105	363	2012	74	223	75	152	227	71	145
Arrive On Green	0.62	0.62	0.61	0.62	0.62	0.61	0.22	0.23	0.22	0.22	0.23	0.22
Sat Flow, veh/h	523	3211	171	517	3270	121	541	332	670	543	314	638
Grp Volume(v), veh/h	56	544	563	56	537	558	258	0	0	157	0	0
Grp Sat Flow(s) veh/h/ln	523	1663	1719	517	1663	1728	1542	Õ	0	1494	0	0
Q Serve(q_s), s	3.5	9.5	9.5	3.5	9.3	9.3	3.3	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(a c), s	12.8	9.5	9.5	13.1	9.3	9.3	7.8	0.0	0.0	4.4	0.0	0.0
Prop In Lane	1.00	0.0	0.10	1.00	0.0	0.07	0.41	5.0	0.43	0.46	0.0	0.43
Lane Grp Cap(c), veh/h	367	1023	1058	363	1023	1064	436	0	0	429	0	0
V/C Ratio(X)	0.15	0.53	0.53	0.15	0.52	0.52	0.59	0.00	0.00	0.37	0.00	0.00
Avail Cap(c, a), veh/h	462	1324	1369	456	1324	1376	690	0	0	673	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	9.2	5.6	5.6	9.3	5.6	5.6	18.3	0.0	0.0	17.1	0.0	0.0
Incr Delay (d2), s/veh	0.3	0.6	0.6	0.3	0.6	0.6	1.8	0.0	0.0	0.7	0.0	0.0
Initial Q Delav(d3) s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%) veh	/lr0.4	2.4	2.5	0.4	2.4	2.5	2.8	0.0	0.0	1.6	0.0	0.0
Unsig, Movement Delay.	s/veh				_			5.5				
LnGrp Delav(d).s/veh	9.5	6.2	6.2	9.6	6.2	6.1	20.1	0.0	0.0	17.8	0.0	0.0
LnGrp LOS	A	A	A	A	A	A	С	A	A	В	A	A
Approach Vol. veh/h		1163			1151		-	258			157	
Approach Delay, s/veh		6.4			6.3			20.1			17.8	
Approach LOS		A			0.0 A			C			B	
Timor Appianod Dha		0		4		C		0			5	
Physical Prise Prise Prise Physical Prise Physical Physic	6	25.2		15.6		35.3		15.6				
Change Period (V+Po)	. Э С	/ 5		/ 5		/ 5		15.0				
May Green Setting (Cm	av) c	4.5		20.0		4.5		20.0				
Max O Clear Time (c. c+	.11) e	40.0 1/1 R		6.4		40.0		20.0 Q R				
Green Ext Time (n. c)	11), 5	16.0		0.4		15.1		9.0 1 2				
		10.0		0.9		13.7		1.5				
Intersection Summary			0.0									
HUM 6th Utri Delay			8.3									
HUM 6th LUS			А									

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		đ þ		۲	∱ î,			4			4	
Traffic Vol, veh/h	5	1055	55	15	945	30	40	5	35	30	10	20
Future Vol, veh/h	5	1055	55	15	945	30	40	5	35	30	10	20
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	6	1185	62	17	1062	34	45	6	39	34	11	22

Major/Minor	Major1		N	/lajor2		1	Minor1		I	Minor2				
Conflicting Flow All	1096	0	0	1247	0	0	1799	2358	624	1721	2372	548		
Stage 1	-	-	-	-	-	-	1228	1228	-	1113	1113	-		
Stage 2	-	-	-	-	-	-	571	1130	-	608	1259	-		
Critical Hdwy	4.1	-	-	4.1	-	-	7.5	6.5	6.9	7.5	6.5	6.9		
Critical Hdwy Stg 1	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-		
Critical Hdwy Stg 2	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-		
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3		
Pot Cap-1 Maneuver	644	-	-	565	-	-	51	36	433	59	35	485		
Stage 1	-	-	-	-	-	-	192	253	-	226	286	-		
Stage 2	-	-	-	-	-	-	478	281	-	454	244	-		
Platoon blocked, %		-	-		-	-								
Mov Cap-1 Maneuver	644	-	-	565	-	-	~ 34	34	433	45	33	485		
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 34	34	-	45	33	-		
Stage 1	-	-	-	-	-	-	186	245	-	219	277	-		
Stage 2	-	-	-	-	-	-	424	273	-	391	236	-		
Annroach	ER			\//R			NR			SB				
HCM Control Dolov o				0.2		¢	116.2			270.1				
HOM CONTO Delay, S	0.2			U.Z		φ	440.3 E			270.1				
							Г			Г				
Minor Lane/Major Mvn	nt l	VBLn1	EBL	EBT	EBR	WBL	WBT	WBR \$	SBLn1					
Capacity (veh/h)		57	644	-	-	565	-	-	59					
HCM Lane V/C Ratio		1.577	0.009	-	-	0.03	-	-	1.143					
HCM Control Delay (s) \$	446.3	10.6	0.2	-	11.6	-	-	278.1					
HCM Lane LOS		F	В	А	-	В	-	-	F					
HCM 95th %tile Q(veh	ı)	8.2	0	-	-	0.1	-	-	5.6					
Notes														
~: Volume exceeds ca	pacity	\$: De	elay exc	eeds 30	0s -	+: Com	outation	Not De	fined	*: All ı	major v	olume in	platoon	

r										
I	n			20	~	0		0	n	
I					_	ι.				
H		-	•	•	•	•	•••	-		

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	A		۲.	A			4			4	
Traffic Vol, veh/h	15	1055	50	5	1005	5	20	0	5	5	0	35
Future Vol, veh/h	15	1055	50	5	1005	5	20	0	5	5	0	35
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage, #	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	17	1213	57	6	1155	6	23	0	6	6	0	40

Major/Minor	Major1		Ν	1ajor2		N	/linor1		ľ	Minor2			
Conflicting Flow All	1161	0	0	1270	0	0	1866	2449	635	1811	2474	581	
Stage 1	-	-	-	-	-	-	1276	1276	-	1170	1170	-	
Stage 2	-	-	-	-	-	-	590	1173	-	641	1304	-	
Critical Hdwy	4.1	-	-	4.1	-	-	7.5	6.5	6.9	7.5	6.5	6.9	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-	
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	609	-	-	554	-	-	46	31	426	50	30	462	
Stage 1	-	-	-	-	-	-	179	240	-	208	269	-	
Stage 2	-	-	-	-	-	-	466	268	-	434	232	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	609	-	-	554	-	-	41	30	426	48	29	462	
Mov Cap-2 Maneuver	-	-	-	-	-	-	41	30	-	48	29	-	
Stage 1	-	-	-	-	-	-	174	233	-	202	266	-	
Stage 2	-	-	-	-	-	-	421	265	-	416	226	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.1			0.1			148			25.4			
HCM LOS							F			D			

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	50	609	-	-	554	-	-	222
HCM Lane V/C Ratio	0.575	0.028	-	-	0.01	-	-	0.207
HCM Control Delay (s)	148	11.1	-	-	11.6	-	-	25.4
HCM Lane LOS	F	В	-	-	В	-	-	D
HCM 95th %tile Q(veh)	2.2	0.1	-	-	0	-	-	0.8

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	∱ ₽		5	∱î ≽			\$			\$	
Traffic Vol, veh/h	230	760	115	65	850	50	15	0	30	45	5	170
Future Vol, veh/h	230	760	115	65	850	50	15	0	30	45	5	170
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	253	835	126	71	934	55	16	0	33	49	5	187

Major/Minor	Major1		I	Major2			Minor1		1	Minor2			
Conflicting Flow All	989	0	0	961	0	0	2016	2535	481	2028	2571	495	
Stage 1	-	-	-	-	-	-	1404	1404	-	1104	1104	-	
Stage 2	-	-	-	-	-	-	612	1131	-	924	1467	-	
Critical Hdwy	4.1	-	-	4.1	-	-	7.5	6.5	6.9	7.5	6.5	6.9	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-	
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	707	-	-	724	-	-	35	28	537	~ 34	26	525	
Stage 1	-	-	-	-	-	-	149	208	-	229	289	-	
Stage 2	-	-	-	-	-	-	452	281	-	294	194	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	707	-	-	724	-	-	~ 11	16	537	~ 21	15	525	
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 11	16	-	~ 21	15	-	
Stage 1	-	-	-	-	-	-	96	134	-	147	261	-	
Stage 2	-	-	-	-	-	-	257	253	-	177	125	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	2.7			0.7		\$	545.6		g	\$ 1041			
HCM LOS				-		,	F			F			
Minor Lane/Maior Mym	nt N	IRI n1	FRI	FRT	FRR	W/RI	WRT	W/RR (SBI n1				
Conceity (yeb/b)	<u>n</u> 1	10LIII 20	707	LDI	LDIX	704	VUDI	VUDIX	70				
Capacity (Ven/II)		JZ	0 357	-	-	0.000	-	-	3.06				
HCM Control Dolou (a)	¢	1.040 5/5 6	12.0	-	-	10 5	-	-	3.00				
HCM Lang LOS) Þ	545.0 E	12.9 P	-	-	10.5 D	-	- J	p 1041				
HCM 05th % tile O(yeh	۱	Г 5 Б	16	-	-	03	-	-	⊤ 2/11				
)	5.5	1.0	-	-	0.5	-	-	24.1				
Notes													

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined

*: All major volume in platoon

					17			
n	 ^	0	0	0		5	n	
	-	J	c	c	L	LU I		

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	î₽		1	∱î ≽			\$			¢	
Traffic Vol, veh/h	20	695	105	60	740	0	50	0	20	10	0	20
Future Vol, veh/h	20	695	105	60	740	0	50	0	20	10	0	20
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	23	799	121	69	851	0	57	0	23	11	0	23

Major/Minor	Major1		М	ajor2	2 Minor1		r1 Minor2						
Conflicting Flow All	851	0	0	920	0	0	1470	1895	460	1435	1955	426	
Stage 1	-	-	-	-	-	-	906	906	-	989	989	-	
Stage 2	-	-	-	-	-	-	564	989	-	446	966	-	
Critical Hdwy	4.1	-	-	4.1	-	-	7.5	6.5	6.9	7.5	6.5	6.9	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-	
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	796	-	-	750	-	-	90	70	554	96	65	582	
Stage 1	-	-	-	-	-	-	301	358	-	268	327	-	
Stage 2	-	-	-	-	-	-	483	327	-	567	336	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	796	-	-	750	-	-	79	62	554	84	57	582	
Mov Cap-2 Maneuver	-	-	-	-	-	-	79	62	-	84	57	-	
Stage 1	-	-	-	-	-	-	292	348	-	260	297	-	
Stage 2	-	-	-	-	-	-	421	297	-	528	326	-	
Approach	EB			WB			NB			SB			
HCM Control Delay	0.2			0.8			107.5			27.2			

HCM Control Delay, s	0.2	0.8	107.5	27.2	
HCM LOS			F	D	

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR \$	SBLn1
Capacity (veh/h)	105	796	-	-	750	-	-	196
HCM Lane V/C Ratio	0.766	0.029	-	-	0.092	-	-	0.176
HCM Control Delay (s)	107.5	9.7	-	-	10.3	-	-	27.2
HCM Lane LOS	F	А	-	-	В	-	-	D
HCM 95th %tile Q(veh)	4.2	0.1	-	-	0.3	-	-	0.6

Intersection													
Int Delay, s/veh	78.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ľ	∱ î,		5	∱ î,			÷			÷		
Traffic Vol, veh/h	210	495	5	5	460	50	15	10	5	65	5	260	
Future Vol, veh/h	210	495	5	5	460	50	15	10	5	65	5	260	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	100	-	-	100	-	-	-	-	-	-	-	-	
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	83	83	83	83	83	83	83	83	83	83	83	83	
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0	
Mvmt Flow	253	596	6	6	554	60	18	12	6	78	6	313	

Major/Minor	Major1		I	Major2			Minor1			Minor2			
Conflicting Flow All	614	0	0	602	0	0	1397	1731	301	1406	1704	307	
Stage 1	-	-	-	-	-	-	1105	1105	-	596	596	-	
Stage 2	-	-	-	-	-	-	292	626	-	810	1108	-	
Critical Hdwy	4.1	-	-	4.1	-	-	7.5	6.5	6.9	7.5	6.5	6.9	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-	
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	975	-	-	985	-	-	102	89	701	101	93	695	
Stage 1	-	-	-	-	-	-	228	289	-	462	495	-	
Stage 2	-	-	-	-	-	-	697	480	-	344	288	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	975	-	-	985	-	-	42	66	701	~ 69	69	695	
Mov Cap-2 Maneuver	-	-	-	-	-	-	42	66	-	~ 69	69	-	
Stage 1	-	-	-	-	-	-	169	214	-	342	492	-	
Stage 2	-	-	-	-	-	-	376	477	-	238	213	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	3			0.1			139.1		\$	355.8			
HCM LOS							F			F			
Minor Lane/Maior Mym	nt	NBL n1	EBL	EBT	EBR	WBL	WBT	WBR	SBL n1				
Capacity (veh/h)		58	975		-	985	-	-	238				
HCM Lane V/C Ratio		0.623	0.259	_	-	0.006	_	-	1.671				
HCM Control Delay (s)		139.1	10	-	-	8.7	-	-\$	355.8				
HCM Lane LOS		F	A	-	-	A	-	-	F				
HCM 95th %tile Q(veh)	2.6	1	-	-	0	-	-	25.7				
	,												
INOTES													

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined

*: All major volume in platoon

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	∱ î,		1	∱ î≽			\$			\$	
Traffic Vol, veh/h	0	440	65	35	440	0	35	0	50	0	0	0
Future Vol, veh/h	0	440	65	35	440	0	35	0	50	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	100	-	-	100	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
M∨mt Flow	0	500	74	40	500	0	40	0	57	0	0	0

Major/Minor	Major1		Ν	/lajor2		Ν	1inor1		Ν	1inor2			
Conflicting Flow All	500	0	0	574	0	0	867	1117	287	830	1154	250	
Stage 1	-	-	-	-	-	-	537	537	-	580	580	-	
Stage 2	-	-	-	-	-	-	330	580	-	250	574	-	
Critical Hdwy	4.1	-	-	4.1	-	-	7.5	6.5	6.9	7.5	6.5	6.9	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.5	5.5	-	6.5	5.5	-	
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	1075	-	-	1009	-	-	250	209	716	266	199	756	
Stage 1	-	-	-	-	-	-	501	526	-	472	503	-	
Stage 2	-	-	-	-	-	-	663	503	-	738	506	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1075	-	-	1009	-	-	243	201	716	238	191	756	
Mov Cap-2 Maneuver	-	-	-	-	-	-	243	201	-	238	191	-	
Stage 1	-	-	-	-	-	-	501	526	-	472	483	-	
Stage 2	-	-	-	-	-	-	637	483	-	679	506	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0			0.6			17			0			
HCM LOS							С			А			

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1
Capacity (veh/h)	397	1075	-	-	1009	-	-	-
HCM Lane V/C Ratio	0.243	-	-	-	0.039	-	-	-
HCM Control Delay (s)	17	0	-	-	8.7	-	-	0
HCM Lane LOS	С	А	-	-	А	-	-	А
HCM 95th %tile Q(veh)	0.9	0	-	-	0.1	-	-	-

Intersection													
Int Delay, s/veh	2.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	1	•	1	<u>ک</u>	el 👘			\$			4		
Traffic Vol, veh/h	45	390	50	5	395	10	30	0	5	5	10	35	
Future Vol, veh/h	45	390	50	5	395	10	30	0	5	5	10	35	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	200	-	100	100	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87	
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0	
Mvmt Flow	52	448	57	6	454	11	34	0	6	6	11	40	

Major/Minor	Major1		Ν	/lajor2			Minor1		ľ	/linor2			
Conflicting Flow All	465	0	0	505	0	0	1049	1029	448	1056	1081	460	
Stage 1	-	-	-	-	-	-	552	552	-	472	472	-	
Stage 2	-	-	-	-	-	-	497	477	-	584	609	-	
Critical Hdwy	4.1	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-	
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	1107	-	-	1070	-	-	207	236	615	205	220	605	
Stage 1	-	-	-	-	-	-	522	518	-	576	562	-	
Stage 2	-	-	-	-	-	-	559	559	-	501	488	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1107	-	-	1070	-	-	178	223	615	195	208	605	
Mov Cap-2 Maneuver	-	-	-	-	-	-	178	223	-	195	208	-	
Stage 1	-	-	-	-	-	-	497	494	-	549	559	-	
Stage 2	-	-	-	-	-	-	508	556	-	473	465	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.8			0.1			27.8			16.2			
HCM LOS							D			С			

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	
Capacity (veh/h)	198	1107	-	-	1070	-	-	380	
HCM Lane V/C Ratio	0.203	0.047	-	-	0.005	-	-	0.151	
HCM Control Delay (s)	27.8	8.4	-	-	8.4	-	-	16.2	
HCM Lane LOS	D	А	-	-	А	-	-	С	
HCM 95th %tile Q(veh)	0.7	0.1	-	-	0	-	-	0.5	

Intersection													
nt Delay, s/veh	0.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	1	ef 👘		۲.	et P			\$			\$		
Traffic Vol, veh/h	15	370	10	0	350	5	0	0	0	0	0	35	
Future Vol, veh/h	15	370	10	0	350	5	0	0	0	0	0	35	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	100	-	-	100	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	80	80	80	80	80	80	80	80	80	80	80	80	
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0	
Nvmt Flow	19	463	13	0	438	6	0	0	0	0	0	44	

Major/Minor	Major1		l	Major2			Minor1		N	/linor2			
Conflicting Flow All	444	0	0	476	0	0	971	952	470	949	955	441	
Stage 1	-	-	-	-	-	-	508	508	-	441	441	-	
Stage 2	-	-	-	-	-	-	463	444	-	508	514	-	
Critical Hdwy	4.1	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-	
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	1127	-	-	1097	-	-	234	261	598	242	260	621	
Stage 1	-	-	-	-	-	-	551	542	-	599	580	-	
Stage 2	-	-	-	-	-	-	583	579	-	551	539	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1127	-	-	1097	-	-	215	257	598	239	256	621	
Mov Cap-2 Maneuver	-	-	-	-	-	-	215	257	-	239	256	-	
Stage 1	-	-	-	-	-	-	542	533	-	589	580	-	
Stage 2	-	-	-	-	-	-	542	579	-	542	530	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.3			0			0			11.2			
HCM LOS							A			В			
Minor Lane/Maior Mym	nt	NBI n1	FBI	FBT	FRR	WBI	WBT	WBR	SBI n1				

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1	
Capacity (veh/h)	-	1127	-	-	1097	-	-	621	
HCM Lane V/C Ratio	-	0.017	-	-	-	-	-	0.07	
HCM Control Delay (s)	0	8.2	-	-	0	-	-	11.2	
HCM Lane LOS	A	А	-	-	А	-	-	В	
HCM 95th %tile Q(veh)	-	0.1	-	-	0	-	-	0.2	

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	et 👘		ľ	•	1		\$			÷	
Traffic Vol, veh/h	85	290	5	0	275	10	10	0	0	5	0	60
Future Vol, veh/h	85	290	5	0	275	10	10	0	0	5	0	60
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	150	-	-	125	-	125	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	86	86	86	86	86	86	86	86	86	86	86	86
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
M∨mt Flow	99	337	6	0	320	12	12	0	0	6	0	70

Major/Minor	Major1		Ν	/lajor2		Ν	1inor1		Ν	/linor2			
Conflicting Flow All	332	0	0	343	0	0	899	870	340	858	861	320	
Stage 1	-	-	-	-	-	-	538	538	-	320	320	-	
Stage 2	-	-	-	-	-	-	361	332	-	538	541	-	
Critical Hdwy	4.1	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-	
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	1239	-	-	1227	-	-	262	292	707	279	295	725	
Stage 1	-	-	-	-	-	-	531	526	-	696	656	-	
Stage 2	-	-	-	-	-	-	662	648	-	531	524	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1239	-	-	1227	-	-	222	269	707	262	271	725	
Mov Cap-2 Maneuver	-	-	-	-	-	-	222	269	-	262	271	-	
Stage 1	-	-	-	-	-	-	489	484	-	640	656	-	
Stage 2	-	-	-	-	-	-	598	648	-	489	482	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	1.8			0			22.1			11.4			

HCM LOS						С			В	
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBI	_n1		
Capacity (veh/h)	222	1239	-	-	1227	-	- 6	538		
HCM Lane V/C Ratio	0.052	0.08	-	-	-	-	- 0.1	118		
HCM Control Delay (s)	22.1	8.2	-	-	0	-	- 1	1.4		
HCM Lane LOS	С	Α	-	-	Α	-	-	В		

0

0.4

0.2

0.3

HCM 95th %tile Q(veh)

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Traffic Vol, veh/h	40	290	5	0	270	25	0	0	5	35	10	75
Future Vol, veh/h	40	290	5	0	270	25	0	0	5	35	10	75
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	80	80	80	80	80	80	80	80	80	80	80	80
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
M∨mt Flow	50	363	6	0	338	31	0	0	6	44	13	94

Major/Minor	Major1	Major2			Ν	linor1		Ν	linor2				
Conflicting Flow All	369	0	0	369	0	0	873	835	366	823	823	354	
Stage 1	-	-	-	-	-	-	466	466	-	354	354	-	
Stage 2	-	-	-	-	-	-	407	369	-	469	469	-	
Critical Hdwy	4.1	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-	
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	1201	-	-	1201	-	-	273	306	684	295	311	694	
Stage 1	-	-	-	-	-	-	581	566	-	667	634	-	
Stage 2	-	-	-	-	-	-	625	624	-	579	564	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1201	-	-	1201	-	-	219	290	684	281	295	694	
Mov Cap-2 Maneuver	-	-	-	-	-	-	219	290	-	281	295	-	
Stage 1	-	-	-	-	-	-	551	537	-	632	634	-	
Stage 2	-	-	-	-	-	-	530	624	-	544	535	-	
Approach	EB			WB			NB			SB			

Approach	ED	VVD	IND	30	
HCM Control Delay, s	1	0	10.3	16.9	
HCM LOS			В	С	

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	684	1201	-	-	1201	-	-	450
HCM Lane V/C Ratio	0.009	0.042	-	-	-	-	-	0.333
HCM Control Delay (s)	10.3	8.1	0	-	0	-	-	16.9
HCM Lane LOS	В	Α	А	-	А	-	-	С
HCM 95th %tile Q(veh)	0	0.1	-	-	0	-	-	1.4

Intersection

Int Delay, s/veh

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT S
Lane Configurations 🚯 📢
Traffic Vol, veh/h 0 265 100 20 270 0 70 0 10 0 0
Future Vol, veh/h 0 265 100 20 270 0 70 0 10 0 0
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0
Sign Control Free Free Free Free Free Free Stop Stop Stop Stop Stop Stop Stop Stop
RT Channelized None None None No
Storage Length
Veh in Median Storage, # - 0 0 0 0
Grade, % - 0 0 0 0
Peak Hour Factor 87 87 87 87 87 87 87 87 87 87 87 87 87
Heavy Vehicles, % 0 0 0 0 0 0 0 0 0 0 0 0
Mvmt Flow 0 305 115 23 310 0 80 0 11 0 0

Major/Minor	Major1		Ν	/lajor2		Ν	/linor1		М	inor2			
Conflicting Flow All	-	0	0	420	0	0	719	719	363	-	-	310	
Stage 1	-	-	-	-	-	-	363	363	-	-	-	-	
Stage 2	-	-	-	-	-	-	356	356	-	-	-	-	
Critical Hdwy	-	-	-	4.1	-	-	7.1	6.5	6.2	-	-	6.2	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	-	-	-	-	
Follow-up Hdwy	-	-	-	2.2	-	-	3.5	4	3.3	-	-	3.3	
Pot Cap-1 Maneuver	0	-	-	1150	-	0	346	357	686	0	0	735	
Stage 1	0	-	-	-	-	0	660	628	-	0	0	-	
Stage 2	0	-	-	-	-	0	666	633	-	0	0	-	
Platoon blocked, %		-	-		-								
Mov Cap-1 Maneuver	-	-	-	1150	-	-	340	348	686	-	-	735	
Mov Cap-2 Maneuver	-	-	-	-	-	-	340	348	-	-	-	-	
Stage 1	-	-	-	-	-	-	660	628	-	-	-	-	
Stage 2	-	-	-	-	-	-	650	618	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0			0.6			18.2			0			
HCM LOS	·						C			A			
							2						
Minor Lane/Major Mvm	t NBL	_n1	EBT	EBR	WBL	WBT S	BLn1						
Capacity (veh/h)	3	363	_	-	1150	-	-						
HCM Lane V/C Ratio	0.2	253	-	-	0.02	-	-						
HCM Control Dolay (c)	1	Q 7			8.2	٥	٥						

	10.2			0.2	U	•	
HCM Lane LOS	С	-	-	А	Α	А	
HCM 95th %tile Q(veh)	1	-	-	0.1	-	-	

Intersection	
Intersection Delay, s/veh	10.5
Intersection LOS	В

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			4	
Traffic Vol, veh/h	65	75	35	15	130	75	35	85	15	30	70	25
Future Vol, veh/h	65	75	35	15	130	75	35	85	15	30	70	25
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
M∨mt Flow	80	93	43	19	160	93	43	105	19	37	86	31
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	10.4			10.9			10.2			10		
HCM LOS	В			В			В			А		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	26%	37%	7%	24%
Vol Thru, %	63%	43%	59%	56%
Vol Right, %	11%	20%	34%	20%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	135	175	220	125
LT Vol	35	65	15	30
Through Vol	85	75	130	70
RT Vol	15	35	75	25
Lane Flow Rate	167	216	272	154
Geometry Grp	1	1	1	1
Degree of Util (X)	0.249	0.308	0.373	0.229
Departure Headway (Hd)	5.386	5.129	4.942	5.352
Convergence, Y/N	Yes	Yes	Yes	Yes
Сар	667	700	733	670
Service Time	3.424	3.16	2.942	3.391
HCM Lane V/C Ratio	0.25	0.309	0.371	0.23
HCM Control Delay	10.2	10.4	10.9	10
HCM Lane LOS	В	В	В	А
HCM 95th-tile Q	1	1.3	1.7	0.9

Intersection

Intersection Delay, s/veh 8.3 Intersection LOS A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			4			4			4		
Traffic Vol, veh/h	65	50	50	0	25	10	35	25	5	10	40	65	
Future Vol, veh/h	65	50	50	0	25	10	35	25	5	10	40	65	
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0	
Mvmt Flow	75	57	57	0	29	11	40	29	6	11	46	75	
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0	
Approach	EB				WB		NB			SB			
Opposing Approach	WB				EB		SB			NB			
Opposing Lanes	1				1		1			1			
Conflicting Approach Le	ft SB				NB		EB			WB			
Conflicting Lanes Left	1				1		1			1			
Conflicting Approach Rig	gh t NB				SB		WB			EB			
Conflicting Lanes Right	1				1		1			1			
HCM Control Delay	8.6				7.7		8.1			8			
HCM LOS	А				А		А			А			

Lane	NBLn1	EBLn1\	VBLn1	SBLn1
Vol Left, %	54%	39%	0%	9%
Vol Thru, %	38%	30%	71%	35%
Vol Right, %	8%	30%	29%	57%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	65	165	35	115
LT Vol	35	65	0	10
Through Vol	25	50	25	40
RT Vol	5	50	10	65
Lane Flow Rate	75	190	40	132
Geometry Grp	1	1	1	1
Degree of Util (X)	0.096	0.227	0.049	0.154
Departure Headway (Hd)	4.62	4.304	4.4	4.182
Convergence, Y/N	Yes	Yes	Yes	Yes
Сар	776	836	814	859
Service Time	2.644	2.323	2.424	2.202
HCM Lane V/C Ratio	0.097	0.227	0.049	0.154
HCM Control Delay	8.1	8.6	7.7	8
HCM Lane LOS	А	А	А	А
HCM 95th-tile Q	0.3	0.9	0.2	0.5

١r	۱ †	$\sim r$	2	2	\sim	2	n
н	ш	-	-	-			
		U 1	•	•		v	

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	25	0	50	25	10	5	20	40	10	25	0
Future Vol, veh/h	0	25	0	50	25	10	5	20	40	10	25	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	4 -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	69	69	69	69	69	69	69	69	69	69	69	69
Heavy Vehicles, %	0	0	0	0	0	0	0	0	0	0	0	0
Mvmt Flow	0	36	0	72	36	14	7	29	58	14	36	0

Major/Minor	Major1		Ν	/lajor2		N	1inor1		Ν	linor2			
Conflicting Flow All	50	0	0	36	0	0	241	230	36	267	223	43	
Stage 1	-	-	-	-	-	-	36	36	-	187	187	-	
Stage 2	-	-	-	-	-	-	205	194	-	80	36	-	
Critical Hdwy	4.1	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-	
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3	
Pot Cap-1 Maneuver	1570	-	-	1588	-	-	717	673	1042	690	679	1033	
Stage 1	-	-	-	-	-	-	985	869	-	819	749	-	
Stage 2	-	-	-	-	-	-	802	744	-	934	869	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1570	-	-	1588	-	-	662	641	1042	607	647	1033	
Mov Cap-2 Maneuver	-	-	-	-	-	-	662	641	-	607	647	-	
Stage 1	-	-	-	-	-	-	985	869	-	819	714	-	
Stage 2	-	-	-	-	-	-	726	709	-	853	869	-	
Approach	FB			WB			NB			SB			
HCM Control Delay s	0			43			9.8			11.2	_		
HCM LOS	0			7.0			0.0 A			B			

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1
Capacity (veh/h)	843	1570	-	-	1588	-	-	635
HCM Lane V/C Ratio	0.112	-	-	-	0.046	-	-	0.08
HCM Control Delay (s)	9.8	0	-	-	7.4	0	-	11.2
HCM Lane LOS	А	А	-	-	А	А	-	В
HCM 95th %tile Q(veh)	0.4	0	-	-	0.1	-	-	0.3