Sweet Home WWTP Upgrades Project

March 2019

Project Foundation

"...make decisions that do <u>the most good, for the most</u> people, for the longest period of time"

Source: 2017-18 City Council Goals

Introductions

Team Introductions

Greg Springman Public Works Director

Trish Rice Engineering Technician Preston Van Meter, PE Project Manager Austin Rambin, PE Project Engineer

Steven Haney WWTP Project Manager CITY AND WWTP

Patrick Davis Staff Engineer Jessica Cawley Staff Engineer

MURRAYSMITH

Project History

Original Facilities Plan Review

ntal | Employee Owned | Offices Nationwide | BrownandCaldwell.co

City of Sweet Home

Continue Collection System Focus

Peak hour flows do not account for future population growth or expansion of the City's service area

Continued Collection System Focus

- Allow for future growth (1.8 MGD in additional peak flow, per 2016 Facility Plan)
- Address aging collection system
- Maintain WWTP Flow < 12 MGD

- \$3 6M of targeted collection system rehabilitation:
 - Remove ~2 MGD of RDII over next 20 years
 - To be completed in-house by City staff
 - City working on manhole sealing now

Existing WWTP Review

Existing WWTP Challenges

- Secondary only, complete mix process
- No Headworks (rags everywhere)
- Early 1990's upgrade added tertiary sand filters
- Undersized CCB & outfall
- Inadequate Aerated Sludge
 Storage Basin
- Dewatering Facility with significant code violations
- Limited SCADA/automation

"3R" Asset Management Approach

- Rehabilitate existing structures
- Reuse existing assets
- <u>Re-purpose</u> existing processes/areas

Rehabilitation @ Half the Cost of New Construction – if done timely!

Targeted Avg. Monthly Wastewater Rate

20% Schematic Design Base Upgrades Sweet Home WWTP

Schematic Design – Base Upgrades

Schematic Design – "3R" Elements

Estimated Cost - \$2.1 M

Influent Pump Station

Reuse and rehabilitate existing influent pump station wet well saves \$\$ for other upgrades

Estimated Cost - \$2.9 M

Headworks Screening and Grit Removal

to improve overall process and biosolids quality

Primary Clarifier

- Add one new primary clarifier
 - Provisions for future expansion
- Allows plant solids process to be converted to anaerobic digestion
 - Eliminates energyintensive aerobic process
- Provides possible incentives from Energy Trust of Oregon (ETO)

Estimated Total Cost - \$3.5 M

Aeration Basin Modifications

- Extend and rehabilitate the existing basin
- Change the flowpath
- Improve aeration
- Improve operational flexibility

Estimated Cost - \$2.4 M

Secondary Clarifiers

Rehabilitate 3 existing Secondary Clarifiers Add one new (larger) Secondary Clarifier #4

Estimated Cost - \$1.3 M

UV Disinfection

Convert existing CCB to Ultraviolet (UV) Disinfection

Estimated Cost - \$0.9 M

Solids Thickening

Construct new Storage/Thickening Building

Install Sludge Thickening Equipment

Estimated Cost - \$3.1 M

Solids Digestion

Construct new Primary Anaerobic Digester

Convert existing Aerobic Digester to Secondary Anaerobic Digester

Solids Dewatering

Demolish Existing Dewatering Facility

Solids Dewatering

- New Dewatering Building on Upper Plant Area
- Cost-effective Premanufactured Metal Building
 - Enclosed screw press
 - Covered "cake" storage area
- Produce high quality Class B Biosolids product
- Class B gives City options to eliminate \$130,000/year landfilling fees
- Class A Biosolids provide more disposal options

Estimated Total Cost - \$1.5 M

Civil Site Improvements

- Site entrance and accessibility
- Site security
- Stormwater management

Estimated Electrical Cost - \$2.3 M Estimated Automation Cost - \$0.5 M

Electrical and SCADA Improvements

- 3 Electrical Rooms on site
- Central CP in Administration Building
 - Redundant PLC's
 - Remote I/O in other Electrical Rooms
- Provide remote login capability for Plant Staff
- Plant Wifi Network with operator tablets

Base Project Cost Summary

Base Project Costs ⁽¹⁾									
Influent Pump Station	\$2,100,000								
Headworks Screening and Grit Removal	\$2,900,000								
Primary Clarifier	\$1,700,000								
Aeration Basin Modifications	\$3,500,000								
Secondary Clarifiers	\$2,400,000								
UV Disinfection	\$1,300,000								
Solids Thickening	\$900,000								
Solids Digestion	\$3,100,000								
Dewatering and Biosolids Storage	\$1,300,000								
Civil Site Improvements	\$1,500,000								
Electrical and Instrumentation	\$2,800,000								
Subtotal of Base Project Costs	\$23,500,000								

(1) Costs include markups for General Conditions (8%), Mobilization (8%), Contractor O&P (12%), Design Contingency (20%), Construction Contingency (10%), and Engineering, Legal, and Contract Administration (25%)

Additional Project Elements to Address Unanticipated Challenges

Unanticipated Project Elements

1

2

3.

Existing Tertiary Sand Filters

- Sand filtration not generally good in WW treatment
- Requires pumping
- Limited capacity
 - 2 to 4 MGD
- Uses Chlorine
 - Converting to UV disinfection
- Difficult to operate

NPDES Permit Limits

- NPDES Permit Expired in a. 2010
- Mass Load Limits may limit discharge in future as ADWF increases
- Pursue Mass Load
 Increase through DEQ
 - Anti-Degradation Evaluation Required
- Recommend keeping tertiary filtration to maximize potential for mass load increase

	Average Concen	Effluent trations	Monthly* Average	Weekly* Average	Daily Maximum			
Parameter	Monthly	Weekly	lb/day	lb/day	lbs			
CBOD ₅ (See Note 1)	10 mg/L	15 mg/L	120	180	240			
TSS	10 mg/L	15 mg/L	120	180	240			

(2) November 1 - April 30:

Treated Effluent Outfall 001

Parameter	Average Concen Monthly	Effluent trations Weekly	Monthly* Average lb/day	Weekly* Average lb/day	Daily [*] Maximum lbs		
CBOD ₅ (See Note 1)	15 mg/L	23 mg/L	290	460	630		
TSS	20 mg/L	30 mg/L	350	520	690		

* Average dry weather design flow to the facility equals 1.38 MGD. Mass load limits have been individually assigned and are based upon prior permit.

2043 ADWF = 1.85 MGD (34% increase)

Total Cost - \$1.85 M

New Tertiary Filter Option

Total Cost - \$1.25 M

Admin Building Rehabilitation

- Significant exterior upgrades required
- Men's locker room is marginal and there is no women's locker room
- ADA access issues throughout building
- Undersized and poorly laid out WQ Laboratory
- Few operator/staff works stations

Estimated Total Cost - \$1.6 M

Offsite Class A Biosolids Composting

Covered Compost Pile at Florence OR WWTP

<u>Phase 1</u>

²⁰⁻yr Buildout

Why Class A Biosolids Composting?

- EPA-approved, sustainable solution to resolve biosolids disposal problem
- Exceptional Quality Class A Biosolids can be beneficially reused on City parks, open spaces and provided to ratepayers with no restrictions
 - No restrictions on Class A Biosolids once it leaves the site
- Not subject to the whims of third-party material receivers as required for Class B Biosolids land application
- Create a high quality, valuable product that would save \$130,000 in annual landfill tipping fees

How to Compost Biosolids?

- Treated biosolids are mixed with green waste (wood chips, leaves, grass clippings) collected from City streets and parks
- Compost piles are aerated to provide oxygen for aerobic microbes
- Compost piles are continuously monitored to meet EPA minimum temperatures to kill pathogens
- 4-6 weeks later the compost is ready for public use
- Composting requires adequate room for material storage and equipment movement (1+ acres present day / 2.5+ acres full buildout)

Additional Project Elements Cost Summary

Additional Element Costs ⁽¹⁾									
Tertiary Filter	\$1,850,000								
New Administration/Lab Building	\$1,250,000								
Offsite Class A Biosolids Composting Facility (Phase 1)	\$1,600,000								
Subtotal	\$4,700,000								

(1) Costs include markups for General Conditions (8%), Mobilization (8%), Contractor O&P (12%), Design Contingency (20%), Construction Contingency (10%), and Engineering, Legal, and Contract Administration (25%)

Total Cost Summary

Compiled WWTP Costs for Base and Additional Elements ⁽¹⁾										
Estimated Base Cost	\$23,500,000									
Additional Elements Cost Summary	\$4,700,000									
Additional Elements Subtotal	\$28,200,000									

(1) Costs include markups for General Conditions (8%), Mobilization (8%), Contractor O&P (12%), Design Contingency (20%), Construction Contingency (10%), and Engineering, Legal, and Contract Administration (25%)

Providing for future WWTP expansion beyond 20 year planning horizon

- Additional channel for additional influent screen in Headworks
- Provide piping for adding second Primary Clarifier in future (if needed)
- Providing for future Aeration Basin Capacity expansion (if needed)
- Provide for future filter capacity expansion (if needed)

Long Term O&M Considerations

"...make decisions that do <u>the most good, for the most</u> people, for the longest period of time" (2017-18 City Council Goals)

Proceeding with the \$28.2M project offers:

- "3R" Approach brings aging facility back to life for 40-50 years
- Full plant automation reduces staffing requirements and cost
- Upgrades provide for cost-effective expansion in future to address unforeseen challenges (e.g. NPDES Permit, Industrial Growth, etc.)
- High quality compost eliminates \$130k/year in landfill costs and provides a valuable end product for use by the City and residents

Project Funding Update

- **City funds.** With recent WW rate increase, the City is now building considerable reserves to support the project.
 - Currently projecting ~\$7M in local funds at start of construction
- **Earmark Funding.** City is currently utilizing a \$2M earmark from the Oregon State Legislature, with potential for another \$3M earmark this legislative session.
- **USDA Grant Discussions.** Initial discussions with USDA indicate a grant of up to 25% of the unfunded balance may be available.
- **ETO Incentives.** Currently working with the Energy Trust of Oregon to identify energy efficiency incentives for the project.
- Loans. Currently discussing loan funding with multiple agencies.

Schedule and Next Steps

Sweet Home WWTP

Overall Project Schedule

Sweet Home WWTP Overall Project Schedule

	2018				2019				2020				2021				2022				2023	
Phase	Q1	Q2	Q3	Q4	Q1	Q2																
Schematic Design																						
Regulatory Review & Funding Agreements																						
Final Design																						
Regulatory Review & Approval																					Ducie	
Bidding & Contracts																					Comp	st pletion
Construction																					June	

Current Date

Next Steps

- Proposed Public Process:
 - Public Hearings on March 26th and April 9th
 - City Council Decision to proceed with project on April 23rd
- Finalize Schematic Design (USDA PER & ER)
- Contigff*fc=nue coordination with Oregon DEQ on NPDES Permit
 - Anti-degradation Evaluation for Mass Load Increase
 - Work to get NPDES Permit Renewal on DEQ Schedule
- Continue work to determine project funding (USDA, DEQ, etc.)
- Update rates and SDCs
- Proceed with final design in June
 - Murraysmith final design & CM proposal to be provided in May

